
Adaptive Malicious URLs Detection:
Learning in the Presence of Concept Drifts

1st Guolin Tan
Institute of Information Engineering, CAS
University of Chinese Academy of Sciences

Beijing, China
tanguolin@iie.ac.cn

2nd Peng Zhang
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

pengzhang@iie.ac.cn

3rd Qingyun Liu
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

liuqingyun@iie.ac.cn

4th Xinran Liu
National Computer Network

Emergency Response and Coordination Center
Beijing, China
lxr@isc.org.cn

5th Chunge Zhu
National Computer Network

Emergency Response and Coordination Center
Beijing, China
zcg@cert.org.cn

Abstract—More people use the Internet to shop, access infor-
mation, etc. But on the other hand, hackers implant malwares
(e.g. Trojans, Worms, etc.) in the web pages to steal user
information and acquire money illegally, which poses a great
risk to the security of cyberspace and the privacy of users.
Therefore, it is of great importance to detect malicious URLs in
the field of cyberspace security. Different from most of previous
methods, in this paper, we propose a method for online malicious
URLs detection based on adaptive learning. By collecting the
network traffic from backbone networks, we train machine
learning models to detect the malicious URLs. But there is a
serious problem in dynamically changing environments where
the statistical properties of target variable change over time,
which is known as concept drift. To address this problem, we
apply a nonparametric test to correctly detect concept drifts in
adaptive learning. Extensive experiments with different types of
concept drifts are performed to demonstrate the feasibility of
our proposed method on both artificial and real datasets. Our
empirical study shows that this approach has good performance
in detecting malicious URLs and concept drifts.

Index Terms—malicious, traffic, adaptive learning, URL, con-
cept drift

I. INTRODUCTION

Malicious URLs are associated with web pages that are
embedded malicious codes or contain illegal contents (e.g.
phishing sites, spam, etc.). In fact, it is noted that close to
one-third of all websites are potentially malicious in nature
[1]. Hackers can implant malicious codes in web pages to
steal user information or install malware, which poses a great
risk to the security of cyberspace and the privacy of users.
Therefore, it is of great importance to detect malicious URLs,
which can also provide a good Internet environment for the
vast number of Internet users.

The traditional method of malicious URLs identification
is based on blacklist collected by user reports or manual
judgments. When a new URL input comes, it queries the
blacklist and checks whether the URL is in the blacklist.
If so, then the URL is reported as malicious. This method

is simple and efficient. However, there is an ever-growing
number of malicious URLs that are not in the blacklist. For ex-
ample, cyber-criminals may use a domain generation algorithm
(DGA) to evade blacklists by generating new malicious URLs.
Therefore, it is almost impossible to maintain an exhaustive
blacklist of malicious URLs [1]. That is to say, this method
cannot predict new malicious URLs.

In order to overcome these shortcomings of the method
based on blacklist, researchers proposed methods based on ma-
chine learning to identify malicious URLs. The identification
of malicious URLs is regarded as a binary classification task
for two-class prediction: malicious and benign. The training
process of machine learning is to find a best mapping from
the d-dimensional feature vector space to output variable.
Compared with the blacklist-based approach, this method has
a good generalization ability to identify unknown malicious
URLs.

Different from most of previous methods, our work focuses
on finding malicious URLs buried within many benign URLs
in massive network traffic. In this paper, we evaluate the
effectiveness of our approach on real datasets. Experimental
results show that malicious URLs can be correctly detected.
On the other hand, benign URLs may change into malicious
URLs. For example malicious codes are embedded in previous
benign web pages by attackers. And malicious URLs may
also change into benign URLs. Both of these changes mean
that the data distribution has changed. This phenomenon of
data distribution change in dynamically changing and non-
stationary environments is called concept drift [2]. When
concept drifts occur, the trained classification model cannot
accurately represent the new data distribution, meaning the
model cannot correctly predict the true class of URLs. In
order to solve this problem, we apply a nonparametric test
to correctly detect concept drifts with very low delay.

To that end, the primary contributions of this paper are as
follows:

1) We introduce novel features with geographic information
to identify malicious URLs. And these features can be
obtained and processed quickly, which can be applied to
real-time malicious URLs detection.

2) Based on our proposed approach, we have developed
an online malicious URLs detection system, which can
detect malicious URLs on backbone networks. We have
verified the feasibility of our approach in this system.

3) In order to solve the problem of concept drift, we apply
statistical test algorithm in our malicious URLs detection
system, which can be applied to monitor the concept drift
in non-stationary environments with lower delay.

The rest of the paper is organized as follows. In section 2,
we review the related work. Section 3 describes the framework
of our system and corresponding implementation details. We
evaluate our approach over both artificial and real datasets in
section 4. Finally we conclude with an overall discussion.

II. RELATED WORK

In recent years, malicious URLs identification based on
machine learning has been extensively studied. A malicious
C&C domain detection method has been proposed in [3] by
using supervised machine learning. However, in that paper,
the classifier model needs to obtain host-based features from
other servers, such as WHOIS information, DNS information,
which to some extent will affect the real-time performance. [4]
employs visible attributes collected from social networks to
classify malicious short URLs on Twitter. In that method, fea-
tures are extracted from Twitter using Twitter streaming APIs
and labeled using VirusTotal and PhishTank. [5] proposed a
method to detect malicious web pages using web contents
as features (e.g. native JavaScript function, HTML document
content etc.). It is obvious that this method is “heavy-weight”,
because entire web contents are required to be obtained which
is time-consuming. And it may also arise security problems,
because the malicious code has been executed.

On the other hand, A serious problem with learning in many
real-world domains is that the concept of interest may change
constantly, e.g. there will be new malicious threats in the field
of cyberspace security. To prevent deterioration in prediction
accuracy because of concept drift, both active and passive
solutions can be adopted. In passive solutions the classifier
is retrained periodically and continuously which consumes a
great deal of extra and useless computational cost (e.g. [6]).
On the contrary, active solutions usually use statistical tests to
detect concept drifts, and trigger retraining models only when
concept drifts are detected (e.g. [7], [8]).

Although many machine learning methods and different
features have been applied to the malicious web page iden-
tification with some success, there are several problems with
current approaches:

1) What features to choose that can be processed quickly
as input of classification model? Because the amount of
web pages in reality is very large and continues to sharply
increase. Efficient processing is a very important issue.

TABLE I
PARTIAL DESTINATION PORT NUMBERS OF MALICIOUS AND BENIGN

URLS

Malicious Port Numbers Benign Port Numbers

1988 8081 1010 1218 2000
2814 8181 1024 1234 2002
3128 8880 1188 1235 2010
3129 8888 1218 1303 2012
3690 9000 1234 1888 2016
4040 10078 1235 1935 2017
6666 11111 1303 1936 2086
8080 31288 1888 1937 2100

2) Based on the features selected above, it is still a difficult
problem to choose which machine learning algorithm that
can classify web pages accurately.

3) In non-stationary environments, how to efficiently detect
concept drifts, so that the classification model can adjust
to the change of distribution, and continue to run with
high accuracy for a long time.

III. APPLICATION

In this section, we will introduce the framework of our
system and corresponding implementation details of malicious
URLs detection.

A. Features

Unlike previous work of others, our malicious URLs de-
tection system is running on the backbone network. So the
network traffic is collected on the campus backbone, and then
features of accessing web pages are extracted from the traffic,
such as source IP, destination IP, etc. We select these features
for the following reasons.

1) IP blocks: Currently the IP addresses are assigned to
different territories in corresponding blocks. That means
IP addresses in the same territory usually have the same
IP block. So the skewed distribution of malicious web
pages over geographical location will be reflected on the
IP address block. It is very reasonable to choose these
features when designing features. We split the IP address
into four segments according to their four bytes.

2) Destination port: In order to escape being identified,
hackers may use different port numbers of malicious
websites. The actual statistical results also verify this
view. Table I shows the destination port numbers of
different types of web pages we collected.

3) Domain: In many cases, the URLs of web pages
collected from backbone network traffic may contain
a lot of extraneous parameters, however, they actually
point to the same malicious web page and their domain
name is the same. So extracting the domain name from
each URL as classification feature not only compresses
the storage space but also saves classification time.

B. System Framework

In order to verify the feasibility of our approach, we
have developed an online malicious URLs detection system,
which detects malicious URLs on the backbone network. Our
malicious URLs detection system consists of four modules
(Feature Extraction, Training, Prediction and Concept Drift
Detection). Figure 1 shows the framework of our system. And
we will introduce these four modules in more detail in the
following sections.
1) Feature Extraction: In order to train the classification

model and predict malicious URLs, we need to extract
features from the original traffic. We have developed the
Feature Extraction module which can analyze network
traffic and extract features that we need. After that, we label
extracted features with 1 for malicious, and -1 for benign
in combination with various blacklists. Table II shows the
number of distinct values of features that we have extracted.
These features will be used as input to the Training module
and the Prediction module.

2) Training: Once the module of Concept Drift Detection
outputs an alarm, which means concept drifts are detected,
it will trigger retraining model using newly collected
training set. However, in practice, there is a problem of
class imbalance of the training set, that the benign web
pages significantly outnumber the malicious web pages.
This problem can seriously affect the performance of
classifiers. We solve this problem by under sampling [9],
so that the number of benign and malicious web pages
are approximately equal. In addition, in this module, we
evaluate the performance of different algorithms to select
the optimal model.

3) Prediction: The Prediction module is deployed on the
campus backbone network. After obtaining the optimal
classification model from the Training module, the Predic-
tion module use the classification model to identify whether
a URL is malicious or not.

4) Concept Drift Detection: To enable our malicious URLs
detection system to adapt to concept drifts and run con-
tinuously with high accuracy, we apply a nonparametric
test to correctly detect concept drifts. In our system, we
detect concept drifts only from partial feedback which
is randomly sampled and manually labeled. The specific
method for detecting concept drift is introduced in the next
section.

C. Concept Drift Detection

Concept drift primarily refers to an online supervised learn-
ing scenario when the relation between the input data and the
target variable changes over time [10]. Concept drift occurs
commonly in the actual operating environment because dy-
namic environments often change unexpectedly. For example,
the host IP of malicious URLs may changes, or hackers
modify the URLs of malicious web pages to avoid detection.
Figure 2 illustrates the change of concepts in terms of the
features of the domain name and host IP. Different color circles

TABLE II
THE NUMBER OF DISTINCT VALUES OF FEATURES

Feature Malicious Benign Total

SourceIP 1stByte 194 194 198
SourceIP 2ndByte 256 256 256
SourceIP 3rdByte 256 256 256
SourceIP 4thByte 256 256 256
DestinIP 1stByte 155 189 190
DestinIP 2ndByte 245 256 256
DestinIP 3rdByte 256 256 256
DestinIP 4thByte 254 256 256

DestinPort 24 354 365
DomainName 5601 16125 21600

represent different concepts (malicious or benign). In this case
of non-stationary environments, learning a changing concept
is infeasible. To address this problem, a learning system needs
to be able to automatically detect concept drifts, and retrain
the model with “fresh” data.

Based on statistical test theory, [11] proposes a form of
the cumulative sum (CUSUM) algorithm, which uses log-
likelihood ratio to detect sequential procedures. If the indicator
value is beyond the predefined confidence interval, a concept
drift is suspected. However, this method requires that the
probability density function of each procedure and the values
of the parameter before and after the concept drift are supposed
to be known, which is a quite unrealistic assumption for
practical applications.

In order to solve these problems, we apply statistical test
algorithm based on Wilcoxon Rank-Sum Test (WRST for
short) [12]. The Wilcoxon rank sum test is a nonparametric
test that can be used to determine whether two independent
samples were selected from populations having the same
distribution. In the WRST method, we can detect the concept
drift by only maintaining two windows of observations. Let
w1 = {t1, t2, · · · , tn} represents an observation window from
time point 1 to n, the same, w2 = {tn+1, tn+2, · · · , tn+m}
represents the second observation window from time point
n+1 to n+m. Both ti in w1 and w2 represent the observed
values of the samples, i = 1, 2, · · · , n +m. Here we use the
accuracy as the observed value. Then sort and assign numeric
ranks to all the observations (put the observations from both
windows to one set), beginning with 1 for the smallest value.
Now, add up the ranks for the observations which came from
window w1. Let r1 equal to the rank sum of ti when ti ∈ w1,
correspondingly, r2 equal to the rank sum of ti when ti ∈ w2.

r1 =

n+m∑
i=1

i ∗ I(ti ∈ w1) (1)

r2 =

n+m∑
i=1

i ∗ I(ti ∈ w2) (2)

If the observations from w1 and w2 belong to the same
distribution, then r1 and r2 should be approximately equal,

traffic
Feature

Extraction

Concept Drift

Detection
Training

Prediction
malicious

URLs

alarmfeedback

input output detection system

online
prediction

offline
detection

1

4

2

3

4 4

3 2

1

1 feature extraction

2 training

3 prediction

4 concept drift detection

Fig. 1. The framework of our real-time malicious URLs detection system.

domain domain

before concept drift after concept drift

host IP host IP

old decision boundary new decision boundary

Fig. 2. Concepts drift on domain name and host IP. Different color circles
represent different concepts of web pages that are malicious or benign. The
black circles are pages that are misclassified after the concept drift.

otherwise a distribution change occurs. Moreover for large
samples, r1 is approximately Gaussian distributed. In that case,
the mean µ and standard deviation σ of r1 are given by [12]
as follows:

µ = E(r1) =
n(n+m+ 1)

2
(3)

σ =
√
D(r1) =

√
nm(n+m+ 1)

12
(4)

So we can use Z = r1−µ
σ as the test statistic and detect the

concept drift by two-sided test. The specific steps to detect the
concept drift are depicted in Algorithm 1.

IV. EVALUATION

A. Data Set

In order to verify the feasibility of our malicious URLs de-
tection system, we collect real HTTP request traffic traversing
the Points of Presence (PoPs) in our campus network with
a duration of 44 days. For each HTTP request, we extract
the features we introduced earlier (see Section 3.1). Then we
labelled 117210 malicious URLs using various blacklists, such
as Phishtank [13] and Antivirus [14], etc. However the number
of benign URLs is far more than the number of malicious

Algorithm 1 RankSumDriftDetect
Input: the detection windows w1, w2;

confidence interval α;
Output: drift;
1: Initialize rankSum1 = 0 , drift = −1;
2: n = length(w1) , m = length(w2)
3: compute µ using formula (3)
4: compute σ using formula (4)
5: wTotal = w1 ∪ w2

6: wRanked = sort(wTotal)
7: for i = 0→ n+m do
8: if wRanked(i) ∈ w1 then
9: rankSum1 = rankSum1 + i

10: end if
11: end for
12: z = rankSum1−µ

σ
13: if |z| > α then
14: drift = 1
15: end if
16: return drift

URLs. Aiming to solve the problem of class imbalance, we use
the “random under sampling” method [9] to remove majority
(benign) samples from the original data set, which makes the
number of malicious URLs and benign URLs approximately
equal.

Secondly, in order to evaluate the performance of our
concept drift detection algorithm, we compared the WRST
algorithm and the CUSUM algorithm over the artificial dataset.
This artificial dataset is constituted of independent and iden-
tically distributed samples following a Gaussian distribution
with mean value 0 and variance 1 before the concept drift.
After the concept drift, it takes the mean value 1 instead.

B. Evaluation Metrics
It is now well known that error rate is not an appropriate

evaluation criterion when there are class imbalance or unequal
costs [15]. For example, in the binary classification tasks, the
majority class account for 99% of the total. If the model
classifies all samples into the majority class, the accuracy of
the model can achieve 99%. However, what we care about
(the minority class) has not been identified. In this case,
we use precision, recall and F1-score et al. to measure the
performance of malicious URLs identification.

To measure the performance of concept drift detection
algorithms, one of the most popular criteria average run length
(ARL) was proposed in [16], which is defined as the expected
number of samples before an concept drift is detected:

ARL = E(nd) (5)

where nd is the detection time of the drift detection algorithm.
In this paper, we will use the ARL and accuracy to evaluate
the performance of concept drift detection.

C. Experimental Settings
First, in order to validate the effectiveness of our proposed

method, we evaluate the performance of the model in detection
malicious URLs upon 6 machine learning algorithms. For each
machine learning algorithm, we perform a tenfold cross vali-
dation. The whole cross-validation process is repeated for ten
times, and the final values from this method are the averages of
these ten cross-validation runs. All of these machine learning
algorithms are implemented in spark machine learning library
MLlib [17]. We summarize the parameters of these machine
learning algorithms in detail as follows:

1) Decision Tree (abbreviated as DT): it uses Gini impurity
as metric criterion to split candidate training subset. The
maximum depth of decision tree is set to 5 and 10.

2) Gradient-boosted tree (abbreviated as GBT): is a popular
classification and regression method using ensembles of
decision trees. GBT iteratively trains decision trees in
order to minimize a loss function. The maximum depth
of decision tree is set to 5 and 10, and both the numbers
of iterations are set to 100.

3) Linear Support Vector Machine (abbreviated as LSVM):
is trained with an L2 regularization. The number of
iteration is set 100 and 1000.

4) Logistic regression (abbreviated as LR): is widely used
to predict binary classification tasks. It is a linear method
and the standard feature scaling and L2 regularization are
used by default.

5) Naive Bayes (abbreviated as NB): is a simple probabilis-
tic classifier based on applying Bayes theorem with strong
(naive) independence assumptions between the features.
The parameter of Laplace smoothing is set to 1.

6) Random Forests (abbreviated as RF): are ensembles of
decision trees described above. The maximum depth of
decision tree is set to 5 and 10.

Next, in order to evaluate the performance of the concept
drift detection algorithm, we simulate two types of concept

drift scenarios [7] [18] on the real data set. Both in the
simulated two types of concept drift scenarios, the test set is
randomly split into 20 batches of equal size containing 1172
samples each.

In the first scenario (sudden concept drift), the concept drift
suddenly occurs in batch 11, where all malicious URLs be-
come benign, and the original benign URLs become malicious.

In the second scenario (incremental concept drift), the
incremental concept drift slowly occurs in the batch 11 to
the batch 20. In each of these batches, some of the malicious
URLs become benign, and some of the original benign URLs
become malicious. The speed of the drift increases from 0 to
1 with step length 0.2.

D. Results and Analysis

The first experiment is to evaluate the effectiveness of differ-
ent classification algorithms. Table III shows the experimental
results, from which several observations can be drawn. First
of all, according to the experimental results, we found that
both DT, GBT and RF algorithms significantly outperform
the other algorithms. Therefore, we divide these algorithms
into two groups. The first group contains “good” performance
algorithms that all evaluation metrics are greater than 85%
except for the false positive rate. The second group contains
“bad” performance algorithms that are slightly better just
randomly classification. Note that both the LSVM and LR are
linear models. We argue that the linear model is not suitable
for malicious URLs identification. Second, in terms of both
F1-score and precision, GBT has the best performance than
all other compared models. Both F1-score, accuracy and recall
of GBT are greater than 96%. We thus believe the proposed
method is practically attractive and suitable for the application
of malicious URLs identification.

In order to evaluate the real-time processing efficiency of
our approach, we have implemented and deployed it based on
Apache Spark at each Point of Presence (PoP) in our campus
network. Our approach can process nearly 3 billion of HTTP
requests per day. That is to say, it can process 34 thousand
records per second on average. This is much higher than the
performance of the method of [19] that processes an average
of 6.3 thousand records per second.

Finally we conducted a set of experiments to evaluate the
performance of the method of concept drift detection. The
method was tested over both artificial and real datasets. The
results are presented in Fig. 3. It can be clearly seen that the
detection delay of CUSUM is much higher than that of WRST.
In addition, as shown in Table IV, the accuracy of the WRST is
1, which is significantly better than the 56.32% achieved by the
CUSUM on artificial dataset. Note that all these parameters of
the CUSUM algorithm are supposed known, which is a quite
unrealistic assumption for practical applications [11], that is
why we did CUSUM experiments only on artificial data.

CONCLUSION AND FUTURE WORK

In this paper, we propose a real-time and adaptive malicious
URLs detection method. Experimental results show that our

TABLE III
EVALUATION OF THE EFFECTIVENESS OF DIFFERENT CLASSIFICATION ALGORITHMS.

Algorithm
Measures

FPR(%) Accuracy(%) Precision(%) Recall(%) F1(%) Parameters

DT
12.307±0.038 91.131±0.035 88.405±0.147 94.581±0.036 91.382±0.078 maxDepth=5

10.374±0.050 93.821±0.034 90.371±0.120 98.014±0.022 94.033±0.063 maxDepth=10

GBT
8.034±0.034 92.507±0.015 91.981±0.115 93.072±0.031 92.518±0.052 maxDepth=5

3.530±0.021 96.923±0.016 96.458±0.058 97.382±0.024 96.917±0.033 maxDepth=10

RF
12.632±0.279 91.569±0.112 88.357±0.271 95.766±0.121 91.876±0.123 maxDepth=5

10.078±0.070 94.133±0.045 90.645±0.124 98.342±0.015 94.332±0.067 maxDepth=10

LSVM
68.513±4.398 50.892±0.338 39.457±1.816 69.962±4.555 47.303±3.054 Iterations=100

51.262±4.443 51.849±0.463 39.836±1.723 54.552±4.622 39.746±3.174 Iterations=1000

NB
85.355±0.227 55.523±0.310 53.060±0.367 96.529±0.106 68.390±0.281 lamda=1

85.260±0.220 55.565±0.293 53.089±0.350 96.530±0.103 68.417±0.263 lamda=100

LR 41.904±0.105 63.616±0.109 62.255±0.117 69.128±0.143 65.511±0.127

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

(a) The Gaussian distribution before and after concept drift

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

concept drift is detected at 183

estimated concept drift time at 105

(b) CUSUM

0 20 40 60 80 100 120 140 160 180 200
0

5

10

concept drift is detected at 107
(also estimated concept drift time)

(c) WRST

Fig. 3. (a) The Gaussian distribution with the mean value 0 before and 1
after the concept drift. (b) The concept drift is detected with the method of
CUSUM at nd = 183, leading to a detection delay of nd −nc = 83. (c) The
concept drift is detected with the method of WRST at nd = 107, leading to
a detection delay of nd − nc = 7.

TABLE IV
THE PERFORMANCE OF DIFFERENT ALGORITHMS ON BOTH ARTIFICIAL

AND REAL DATASETS.

Dataset Method ARL Delay Accuracy(%) Parameters

artificial
CUSUM 185.65 85.65 56.32 h=50

WRST 102.14 2.14 100 z=1.96

real WRST 102.95 2.95 100 z=1.96

method can effectively detect malicious URLs by achieving
96% F1-score and accuracy. We have deployed it at each Point
of Presence (PoP) in our campus network, which can process
34 thousand records per second on average. On the other
hand, the network environment is non-stationary, malicious
and benign URLs may transform with each other. In order
to adaptively and efficiently detect concept drifts, we apply
nonparametric test algorithm based on rank-sum test that can
detect the concept drifts with a very low delay.

We plan to extend our work to improve the efficiency. This
is especially needed for online deployment on real-time ISP
networks. We also plan to study the misclassified samples to
further improve the detection performance.

ACKNOWLEDGMENT

The author gratefully acknowledges support from National
Key R&D Program 2016 (Grant No.2016YFB0801300), Na-
tional Natural Science Foundation of China (No.61402464),
and Youth Innovation Promotion Association CAS.

REFERENCES

[1] D. Sahoo, C. Liu, and S. C. Hoi, “Malicious url detection using machine
learning: A survey,” arXiv preprint arXiv:1701.07179, 2017.

[2] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[3] M. Kuyama, Y. Kakizaki, and R. Sasaki, “Method for detecting a
malicious domain by using whois and dns features,” in The Third Inter-
national Conference on Digital Security and Forensics (DigitalSec2016),
2016, p. 74.

[4] R. K. Nepali and Y. Wang, “You look suspicious!!: Leveraging visible
attributes to classify malicious short urls on twitter,” in System Sciences
(HICSS), 2016 49th Hawaii International Conference on. IEEE, 2016,
pp. 2648–2655.

[5] Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for detect-
ing malicious javascript code,” Security and Communication Networks,
vol. 9, no. 11, pp. 1520–1534, 2016.

[6] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, 2011.

[7] Y. Sakamoto, K.-I. Fukui, J. Gama, D. Nicklas, K. Moriyama, and
M. Numao, “Concept drift detection with clustering via statistical change
detection methods,” in Knowledge and Systems Engineering (KSE), 2015
Seventh International Conference on. IEEE, 2015, pp. 37–42.

[8] A. Meroño-Peñuela, C. Guéret, R. Hoekstra, S. Schlobach et al.,
“Detecting and reporting extensional concept drift in statistical linked
data,” in 1st International Workshop on Semantic Statistics (SemStats
2013), ISWC. CEUR, 2013.

[9] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[10] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Brazilian Symposium on Artificial Intelligence. Springer,
2004, pp. 286–295.

[11] P. Granjon, “The cusum algorithm - a small review,” Saiga, 2013.
[12] H. B. Mann and D. R. Whitney, “On a test of whether one of two

random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[13] OpenDNS, “Phishtank,” http://www.phishtank.com/.
[14] Antivirus, “Network security threat information sharing platform,”

https://share.anva.org.cn/index.
[15] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for

class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.

[16] A. R. Kamat, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[17] “Machine learning library (mllib) guide,”
http://spark.apache.org/docs/2.1.0/ml-guide.html.

[18] I. Zliobaite, “Learning under concept drift: an overview,” CoRR, vol.
abs/1010.4784, 2010. [Online]. Available: http://arxiv.org/abs/1010.4784

[19] L. Watkins, S. Beck, J. Zook, A. Buczak, J. Chavis, W. H. Robinson,
J. A. Morales, and S. Mishra, “Using semi-supervised machine learning
to address the big data problem in dns networks,” in Computing and
Communication Workshop and Conference (CCWC), 2017 IEEE 7th
Annual. IEEE, 2017, pp. 1–6.

