
MRAQ: A Memory-Based Real-time Aggregation
Query System

Peng Zhang, Junpeng Liu, Shu Li, Rong Yang, Pengxiao Li, Zhao Li, Qingyun Liu
National Computer Network Emergency Response and Coordination Center

Institute of Information Engineering Chinese Academy of Sciences
National Engineering Laboratory for Information Security Technologies

Email: lishu@iie.ac.cn

Abstract—Most of the “Big Data” applications, such as decision
support and emergency response, must provide users with fresh,
low latency results, especially for aggregation results on key
performance index, however, disk-oriented approaches to online
storage are becoming increasingly problematic. They do not scale
gracefully to meet the needs of large-scale Web applications, and
improvements in disk capacity have far outstripped improve-
ments in access latency and bandwidth. To this end, the paper
proposes a memory-based real-time aggregation query system
named MRAQ, which adopts the shared-nothing architecture to
support the scalability. MRAQ implements the efficient aggrega-
tion query through the bitmap index. The experiments show the
effective on the performance improvements.

I. INTRODUCTION

Big Data concern large-volume, complex, growing data sets
with multiple, autonomous sources [1]. With the fast devel-
opment of networking, data storage, and the data collection
capacity, Big Data are now compelling most of the applications
must provide users with fresh, low latency results, especially
for aggregation results on key performance index [2]. Howev-
er, the traditional hardware systems and software architectures
are difficult to meet the demand for high performance. In the
past forty years, the main storage medium is disk. Even though
the capacity of disk is improved quickly, the performance
is still not very ideal. As one can seen from Table I, the
transmission rate is improved by 50 times, and the delay is
only improved by 2 times. If it is measured by capacity/
bandwidth [3], the access delay of disk seems worse. As a
typical representative of low-latency and high throughput, the
memory storage can speed up the query exponentially, and is
an excellent solution to achieve efficient query for Big Data
applications.

However, when large-scale datasets have to be loaded in
memory, it will be costly. But with the decrease of the
price, memory storage gradually becomes available. Nowa-
days, many researchers have already proposed some excellent
solutions. For example, NoSQL, Memcached(Cache), Flash
Memory in the industry and MapUpdate, D-Streams, RAM-
Cloud in the academia.

NoSQL represents a kind of non-relation databases. Some
successful NoSQL solutions include Cassandra [4], HBase [5],
BigTable [6], Dynamo [7], but NoSQL solutions are hardly in
common use like the relational solutions, and they are still
limited by the performance of disk storage.

Web caching is common adopted to improving the per-
formance of Web application. However, the datasets that are
not hit still are cached on the disk, so that a less miss will
bring great performance loss. Moreover, the datasets generated
by the Web applications have more and more complicated
relationship, which makes it difficult to utilize the locality to
reduce the caching overhead. Lets take Facebook for example,
in August 2009, there is about 25% of all online datasets to
be cached on the Memcached server [8], if considering the
datasets cached on the database, actually there is almost 75
percent of datasets to be cached on the memory.

Flash Memory [9] is a longevity and nonvolatile memory,
which can store the datasets even if the power is off., but there
are still gaps with regard to latency and throughput compared
with the Random Access Memory(RAM). As to the cost, RAM
has the least cost under the condition of high query rate and
small datasets; while disk has he least cost under the condition
of low query rate and big dataset. In the two cases, Flash
Memory always is the second choice.

In a word, whatever NoSQL or Cache or Flash Memory, all
of them could not support the real-time query for data stream.
Existing data stream processing systems, such as Esper, Storm,
Yahoo S4 [10], place much emphasis on the single tuple
processing and neglect the aggregation query optimization, so
that these systems would be limited to implement aggregation
query on key performance index. For this reason, users are
in urgent need of an efficient aggregation query system for
data stream. To this end, we have to compromise flexibility to
design the special query, and there are several representative
works as following:

MapUpdate [11] is a fast stream processing framework.
Similar to MapReduce [12], developers only need to write
several functions to use MapUpdate, especially Map and
Update function, the MapUpdate can automatically implement
these functions in the cluster. However, MapUpdate is different
from MapReduce in the following aspects. Firstly, MapUpdate
is used to process the data stream, the Map and Update
functions must be defined based on the data stream. Secondly,
since the data stream has no end, the Updater use the memory
which is called slates to record the synopsis of data stream that
have passed. In MapUpdate, slates actually are the updaters’
memory, can be distributed on multiple nodes implementing
the Map/Update. In addition, the slates can be persisted to the



TABLE I
THE DEVELOPMENT TREND OF DISK ACCESS PERFORMANCE

the Mid of 1980s 2009 improvement of performance (times)
Disk capacity 30MB 500GB 16,667

Maximum transmission rate 2MB/sec 100MB/sec 50
Delay 20ms 10ms 2

Capacity/ Bandwidth (big block) 15s 5,000s 333
Capacity/ Bandwidth (1KB block) 600s 58days 8,333

Jim Gray rule(1KB block) 5min 30hours 360

key-value database in order to provide convenience for the
future update.

D-streams [13] is an efficient and fault-tolerant model for
stream processing, which consider the data stream processing
as a series of batch data processing in small time interval. D-
Stream stored the intermediate state on scalable distributed
datasets RDD to implement fault tolerant. RDD is a no
replication storage abstraction which could reconstruct the lost
data by re-calculating the lost data lineage. In addition, D-
Stream provides a special parallel fault recovery technology
for RDD which makes RDD can quickly be recovered from a
failure.

RAMCloud [14] is scalable high-performance storage and
query system. In RAMCloud, all datasets are stored on RAM
anytime, and the system can be automatically extended to
thousands of servers, moreover, the number of the servers is
transparent to the users, so that it seems as a system to the
users. However, RAMCloud still have to face persistence and
availability challenges: RAM is a kind of volatile memory,
and the persistence and availability like disk is important. A
servers failure and power fail in data center should not cause
dataset loss and service interruption. A simple solution is to
copy multiple backups stored in different servers, but the cost
is too high, and if all servers of the data centers are power
off, the dataset will still be lost.

As one can see, a common point of above three solutions
is that all of them had a data abstraction cached on memory
to improve performance. However, data stream has no end
and the data volume is large scale, it is impossible to store all
datasets in memory, so it is practical to combine memory with
disk to design our system to support the efficient aggregation
query for data stream.

The outline is as follows: Section II presents an overview of
the architecture of MRAQ, including data model, data query.
Section III presents the storage strategy. Section IV presents
performance experiments. Section V presents our conclusions.

II. THE ARCHITECTURE OF MRAQ

This paper proposes a memory-based real-time aggregation
query system named MRAQ, which adopts the shared-nothing
architecture to support the scalability. The fundamental storage
unit in MRAQ is segment. In MRAQ, each table will be
divided into a collection of segments, where each segment
contains about 10 thousand lines, as shown in Table II. MRAQ
simplifies the data distribution, storage and queries with a
timestamp column. MRAQ partitions data sources into well

defined time intervals, typically an hour or a day, and may
further partition according to values from other columns to
achieve the desired segment size. The metadata of segment
is composed of data source identifier, the time interval of the
data, a version string that increases whenever a new segment
is created, and a partition number. The read operation always
access to the data in the segments with the latest version
identifier for the time range. In MRAQ, most of segments are
persistence segment. These segments are stored permanently in
the Hadoop Distributed File System (HDFS). All persistence
segments have their metadata to describe their attributes such
as the size, the compression format and the storage location.
The persistence segment can be updated through the creation
of a new persistence segment that obsoletes the older one. The
segment covered very recent intervals is memory segment. The
memory segment is incrementally updated after new data are
injected, and can support query during incremental indexing
process. The memory segment could periodically be converted
into persistence segment. In MRAQ, persistence segment and
memory segment are created by incremental indexing process.
The incremental indexing only works by calculating the aggre-
gate value of the interesting metric. This often brings an order
of magnitude compression without sacrificing the numerical
accuracy. Of course, this is at the cost of not supporting queries
over the non-aggregated metrics.

The query involves the following types of nodes; each node
performs a specific function. The architecture of MRAQ is
shown in Figure 1. The memory query node is responsible
for data injection, storage, and response to queries for the
most recent data. Similarly, the persistence query node is
responsible for loading and responses to queries for historical
data. Data in the MRAQ is stored in the storage node; the
storage node may be a persistence query node or a memory
query node. A query will firstly be sent to the master node,
which is responsible for finding and routing the query to
the storage nodes containing related data, the storage nodes
execute their portion of the query in parallel and return the
results to the master node, then the master node receives the
results and mergers them, and finally returns the final result
to the users.

The master node, compute node and memory query node
are considered as queryable nodes. In addition, MRAQ also
has a management node to manage the segment assignment,
distribution and replication, but the management node is
unqueryable node, it is mainly used to maintain the stability
of the cluster. The management node depends on the external



TABLE II
THE SEGMENT EXAMPLE

Timestamp Publisher Advertiser Gender Country Impressions Clicks Revenue
2017-04-03 T01:00:00Z sina.com baidu.com Male China 1800 25 15.70
2017-04-03 T01:00:00Z sina.com baidu.com Male China 2912 42 29.18
2017-04-03 T01:00:00Z yahoo.com google.com Male USA 1953 17 17.31
2017-04-03 T01:00:00Z yahoo.com google.com Male USA 3914 170 34.01

Fig. 1. An overview of the MRAQ architecture

MySQL database and the Apache Zookeeper [15] to achieve
coordination.

A. Persistence Query Node

The persistence query node is the main workers of the
MRAQ and does not depend on external components. The
persistence query nodes load persistence segments from a
permanent storage and make them queryable. Since persis-
tence query nodes do not know each other, and there is no
competition of single point between the nodes. The persistence
query nodes only need to know how to perform their assigned
tasks. To help other service discovery persistence query nodes
and the segments they provide, each persistence query node
maintains a connection with the Zookeeper. The persistence
query nodes create a temporary node under specifically config-
ured Zookeeper paths to publish their online status and served
segments. A persistence query node loads new segments or
drops existing segments by creating a temporary znodes under
a special load queue path associated with the persistence query
node. Figure 2 shows a simple interaction of a persistence
query nodes and the Zookeeper. Each persistence query node
has an associated load queue path. When they come online,
they will publish their served segments in the path.

In order to make the segment queryable, a persistence query
node must firstly possess a local copy of this segment. Before
a persistence query node starts to download a segment from
HDFS, it firstly checks the local disk directory (also known as
cache) to determine whether this segment has been in the local
storage. If the cache information of this segment does not exist,
then the persistence query node will download metadata of this
segment from Zookeeper. This metadata includes information
about where the segment is located in HDFS and about how
to decompress and process the segment. Once the persistence

Fig. 2. The interaction of a Persistence Query Node and Zookeeper

query node completes this process of this segment, it will
publish that it can serve this segment in Zookeeper. At this
moment, this segment is queryable.

B. Memory Query Node

The memory query node encapsulates the functions of real-
time data stream injection and query. Data indexed via memory
query node can be queried immediately. The memory query
node consumes data, so it needs a corresponding producer to
provide data. Typically, for the purpose of data persistence,
a message queue, such as Kafka [16] placed between the
producer and the memory query node, as shown in Figure
3.

Message queue shown in Figure 3 can be regarded as a
buffer for incoming data stream. The message queue can main-
tain offsets indicating the location that the memory query node
has read up to and the memory query node can periodically
update this offsets. The message queue can also be seen as a
backup storage for recent data stream. The memory query node



Fig. 3. Real-time data injection

injects data by read message from the message queue. The
time from message creation to the message queue storage to
message consumption may be about hundreds of milliseconds.
The real-time data node maintains an in-memory index buffer
for all injected message, as new message is injected into the
message queue, these indexes are incrementally created and
can also be directly queried. The memory query node persists
periodically these indexes into disk. After persist, a memory
query node uses the offset of last message of the most recently
persisted index to update the message queue. Each persisted
index is unchangeable. If a memory query node fails, when
it starts to recover, it just needs to reload any index which
has been persisted to disk and then reads the message queue
from the point which the last offset is committed. Periodically
committing offsets can reduce the amount of re-scanned data
after a memory query node fails. The memory query node will
upload this segment to HDFS and simultaneously provides a
signal to the persistence query nodes to indicate the segment
could be queried. When a memory query node transforms a
memory segment into a persistence segment, there is no data
loss.

Figure 4 shows this process. Similar to the persistence query
nodes, the memory query node also publishes segments in
the Zookeeper. Unlike the persistence segments, the memory
segments can represent a period of time that extends to the
future. The memory query node does not immediately merge
and build a persistence segment for the previous hour until
after some window times have passed. With a window time,
the memory query node can disperse the data points to come
and reduce the risk of data loss. At the end of this window
time, the memory query node will merge all persisted indexes,
and build a persistence segment for the previous one hour, and
then send the persistence segment to persistence query nodes
to serve. Once the segment on the persistence query node can
be queried, then the memory query node will delete all the
information of this segment and never serve this segment.

The memory query node is highly scalable. If the injection
rate of a given data source exceeds the maximum capacity
of the memory query node, additional memory query nodes
will be added. Multiple memory query nodes simultaneously
consume the data from the same data stream, and each memory
query node is only responsible for a part of the data source.

Disk

HDFS

Data Stream

Memory Query Node

Fig. 4. Real-time data persistence

This naturally creates partitions across nodes. Each memory
query node publishes the memory segment it is serving and
each memory segment has a partition number. The data from
all memory query nodes will be merged at the master node.

C. Master Node

The master node functions as query router, it can route query
to the queryable node, such as the persistence query nodes and
memory query nodes. The master node gathers the metadata
published in Zookeeper about what segments exist and where
the segments. The master nodes route incoming queries such
that the queries hit the right storage nodes. The master node is
also responsible for merging the query results from each node,
before returning final result to the users. In addition, the master
node provides data persistence layer through maintaining a
cache for recent results. When multiple compute nodes fail
and all copies of a segment are lost, if the information has
already been stored in the cache, then the segment results can
still be returned.

D. Management Node

The management node is primarily responsible for the
management and distribution of segments, including loading of
new segments, dropping outdated segments, the management
of the replicated segments and load balancing of segments.
The management node periodically checks the current status
of the cluster. At the runtime, the management node compares
the expected state of the cluster and the actual state of the
cluster to make decision. The management node maintains a
Zookeeper connection to obtain information of all nodes in
the cluster. Meanwhile, the management node also maintains
a MySQL database connection to get the information of
operational parameters and configuration.

In the context of Big Data, a query often involves dozens
or even hundreds of segments. Since single persistence query
node is resource limited, the persistence segments must be
distributed to different nodes of the cluster to ensure the
overall load balancing. To achieve optimal load distribution,
it is necessary to understand the query pattern. In general, the
queries will cover the recent data of adjacent time intervals for
a single data source. In generally, queries that access smaller
segments get faster response. These query patterns indicate
that replicating the recent persistence segments at a higher
rate, distributing the large segments that are close in time to



different persistence query nodes, and puts the segments from
different data sources into one place.

III. DATA STORAGE

MRAQ adopts column-oriented storage format. Considering
aggregates over a large number of data, storing data as columns
has the advantage in storing data as rows. Column-oriented
storage could make the CPU more efficient as a result of only
needed data are loaded and scanned. In a row-oriented data
store, all columns associated with a row must be scanned as
a part of the aggregate. The extra scanning time may degrade
the performance as high as 250%.

A. Column Type

MRAQ supports different column types. According to these
types, MRAQ reduce the cost of storing a column on memory
and disk by using different compression methods. In the
example as shown in Table II, the publisher, advertiser, gender
and country column contains only are strings. String column
is dictionary encoding. Dictionary encoding is a common
method to compress data, for example, in Table II. We map
each publisher into a unique integer identifier. The mapping
transforms the publisher column as an integer array, and the
array indices represent the rows of the raw data set. For the
publisher column, we can transform publishers as follows: [0,
0, 1, 1]. The integer array of this result is very suitable for
compression. The generic compression algorithms based on
encoding are very common in column-oriented storage.

sina.com → 0

yahoo.com → 1

In MRAQ, we use the string compression algorithm. Similar
compression methods can be applied to the numeric columns.
For example, the clicks and revenue column in the table can
be transformed into an array respectively.

Clicks → [25, 42, 17, 170]

Revenue → [15.70, 29.18, 17.31, 34.01]

In this case, we compress the original value instead of
the encoded dictionary representations. In addition, MRAQ
create additional indices for the string column to support any
filters set. These indices are compressed and MRAQ operates
their compressed form. Filters can be represented by the
Boolean expression of multiple indices. Boolean operations on
compressed indices can improve performance and save space.

Consider the publisher column in Table II. For each unique
publisher in Table II, we can get some information which row
of the table the publisher is seen. We store the information in
a binary array, which represents the row by the array indices.
If the publisher is seen in a certain row, the array indices will
be marked as 1, for example:

sina.com → rows[0, 1] → [1][1][0][0]

yahoo.com → rows[2, 3] → [0][0][1][1]

The sina.com appears at 0 and 1 column. The mapping of
column values to the row indices forms an inverted index. In
order to know which rows contain sina.com or yahoo.com, we
join the two arrays with OR.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

The method to perform Boolean operations on a large
bitmap set is often used in search engines. In MRAQ, we
use the Roaring bitmaps algorithm [17] to compress the size
of the bitmap by more than 80%. To achieve high availability
and scalability, MRAQ adopts the following technologies to
ensure there is no single point of failure.

B. Availability

MRAQ replicates persistence segments on multiple nodes.
The management nodes uses load distribution algorithm to
distribute replicates to the compute node. The master node
sends the query to the first node which contains the segment
the query needs.

Since the memory segment is changeable, the memory
segment has a different replication mode. Multiple memory
query nodes can read from the same message bus and data
stream, each node maintains a unique offset and consumer id,
which would create multiple replicates of a memory segment.
This is different from multiple memory query node reads
from the same message bus and data stream, and shares the
same offset and consumer id, which would generate multiple
segment partitions. If the memory query node fails, it can
reload any indexes persisted to disk and read data from the
message bus from the offset point which is submitted the last
time.

If a compute node fails and becomes unavailable, it will
be deleted from the temporary znodes created on Zookeeper.
The coordinator node will notice that the replicates of some
segments are insufficient or already lost. Additional replicates
will be created, and redistributed throughout the cluster.

MRAQ discovers whether memory segment can be copied
by coordinator node and automatically create additional mem-
ory query node as a redundant backup. The management node
and master node have redundant backup when the primary one
fails. The backup node is usually idle until it is reminded by
Zookeeper to take the responsibility of the failed primary.

C. Scalability

MRAQ adds and deletes nodes through the initiation and
termination of Java processes, so the overhead of adding nodes
in batch is small. Scaling up and down the cluster by in
proportion is usually done one node at a time with some
waiting time between shutdowns. This allows coordinator have
sufficient time to redistribute the segment load and create the
additional replications. Shutting down nodes in batch is not
recommended because it may destroy all copies of a segment
to lead data loss.



TABLE III
THE QUERY STATEMENTS

No. Query
1 SELECT count(*) FROM table WHERE timestamp ≥ ? AND timestamp < ?
2 SELECT count(*), sum(metric1) FROM table WHERE timestamp ≥ ? AND timestamp < ?

3 SELECT count(*), sum(metric1), sum(metric2), sum(metric3), sum(metric4) FROM table WHERE
timestamp ≥ ? AND timestamp < ?

4 SELECT high card dimension, count(*) AS cnt FROM table WHERE timestamp ≥ ? AND
timestamp < ? GROUP BY high card dimension ORDER BY cnt limit 100

5 SELECT high card dimension, count(*) AS cnt, sum(metric1) FROM table WHERE
timestamp ≥ ? AND timestamp < ? GROUP BY high card dimension ORDER BY cnt limit 100

6
SELECT high card dimension, count(*) AS cnt, sum(metric1), sum(metric2), sum(metric3),
sum(metric4) FROM table WHERE timestamp ≥ ? AND timestamp < ? GROUP BY
high card dimension ORDER BY cnt limit 100

IV. EXPERIMENTAL EVALUATIONS

To test the performance of MRAQ, we created a large
test cluster with 80GB data including millions of rows. This
data set includes more than a dozen dimensions, and the
cardinalities ranges from double digits to tens of millions. We
calculate three aggregation metrics for each row (count, sum,
average).

• The scope of timestamp of queries covers all data;
• Each machine has 16GB of RAM and 1TB of disk and

16 cores. The machine is configured to use 15 threads to
process queries;

• A memory-mapped storage engine is used.
Data is firstly divided on the time stamp, and then on di-

mension value to create thousands of segments, each segment
is about 10,000 lines. Testing benchmark cluster contains 6
compute nodes, and each node has 16 cores, 16GB of RAM,
10GigEFA Ethernet and 1TB of disk space. Overall, the cluster
contains 96 cores, 96GB of RAM, as well as enough fast
Ethernet and enough disk space. The query statements in Table
III describe the purpose of each query.

Figure 5 shows the cluster scanning rate, and Figure 6
shows the core scanning rate. In Figure 5, we find the results
of the expected linear scaling based on the result of the 5
nodes cluster. In particular, we inspect the performance of
the marginal revenue decreases with the scale of the cluster
increasing. Under the expected linear scaling; Query 1 on
a cluster with 55 nodes would achieve scanning rate of 37
million rows per second. In fact, the scanning rate is 26
million rows per second. However, the Query 2-6 keep a linear
speedup until up to 30 nodes, while in Figure 6 the core
scanning rate of the query remains almost stable. According
to the Amdahls Law, the increase of the speed of a parallel
computing system is often limited by the time requirements
for the sequential operations of the system. In Table III, the
first query is a simple counting, achieving scan rate of 330
thousands lines per second per core.

In fact, we consider that the cluster with 55 nodes is actually
over provisioned for the test datasets, which explains the
growth is slower than the cluster with 30 nodes. Concurrency
model of MRAQ is based on the segment: one thread scan
a segment. If the number of segments on a node modulo the
number of cores is small (such as 17 segments and 15 cores),

Fig. 5. The cluster scanning rate

Fig. 6. The core scanning rate

during the last round of calculation, some of the core will
be idle. When more aggregation metrics are added, we find
performance degrade. This is because MRAQ uses a column-
oriented storage format. For the count (*) query, MRAQ has
to check timestamp column to determine whether it satisfies
the “where” clause. When we add metrics, MRAQ has to load
those metric values and scan over them, which takes up the
memory being scanned.

V. CONCLUSION

In this paper, we propose a memory-based real-time aggre-
gation query system named MRAQ, which adopts the shared-
nothing architecture to support the scalability. The experiments
show the MRAQ has good performance on online aggregation
queries. In future, we will consider the segment assignment,



and plan to design a cost-based optimization assignment
algorithm.

ACKNOWLEDGMENT

The research work is supported by the National Key R&D
Program with (No.2016YFB081304, 2016Y650031105), Na-
tional Natural Science Foundation of China (No. 61402464),Y-
outh Foundation of National Computer Network Emergency
Response Technical Coordination Center (No.2016QN-19)

REFERENCES

[1] X. Wu, X. Zhu, and W. G. Q. et al, “Data mining with big data,” IEEE
transactions on knowledge and data engineering, vol. 26, no. 1, pp.
97–107, 2014.

[2] X. Meng and X. Ci, “Big data management: Concepts, techniques and
challenges,” Journal of computer research and development, vol. 50,
no. 1, pp. 146–169, 2013.

[3] G. Jim and G. Goetz, “The five-minute rule ten years later, and other
computer storage rules of thumb,” ACM Sigmod Record, vol. 26, no. 4,
pp. 63–68, 1997.

[4] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM Sigmod Record, vol. 44, no. 2, pp. 35–40, 2010.

[5] T. Harter, D. Borthakur, S. Dong, A. S. Aiyer, L. Tang, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Analysis of hdfs under hbase:
a facebook messages case study,” in Proceedings of the 12th USENIX
Conference on File and Storage Technologies, 2014, pp. 199–212.

[6] D. Congjin, G. Haodong, and Y. Qiu, “Bigtable: A distributed storage
system for structured data,” in Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation, 2014.

[7] D. Giuseppe, H. Deniz, J. Madan, K. Gunavardhan, L. Avinash, P. Alex,
S. Swaminathan, V. Peter, and V. Werner, “Dynamo: amazon’s highly
available key-value store,” ACM SIGOPS operating systems review,
vol. 41, no. 6, pp. 205–220, 2007.

[8] B. Fitzpatrick and V. Anatoly, “Memcached: a distributed memory object
caching system,” ACM SIGOPS operating systems review, pp. 1–4, 2011.

[9] L. Seung-Ho and K.-H. Park, “An efficient nand flash file system for
flash memory storage,” IEEE Transactions on Computers, vol. 55, no. 7,
pp. 906–912, 2006.

[10] G. Vincenzo, J.-P. Ricardo, P.-M. Marta, S. Claudio, and V. Patrick,
“Streamcloud: An elastic and scalable data streaming system,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp.
2351–2365, 2012.

[11] L. W, L. L, P. S. T. S, and et al, “Muppet: Mapreduce-style processing
of fast data,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
1814–1825, 2012.

[12] K. Shvachko, H. Kuang, S. Radia, and et al, “Analysis of hdfs under
hbase: a facebook messages case study,” in Proceedings of the 26th
Symposium on Mass Storage Systems and Technologies, 2010, pp. 1–
10.

[13] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Computing, 2012, pp. 1–6.

[14] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. M. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for ramclouds:
scalable high-performance storage entirely in dram,” Operating Systems
Review, vol. 43, no. 4, pp. 92–105, 2009.

[15] S. Chintapalli, D. Dagit, and R. Evans, “Pacemaker: When zookeeper
arteries get clogged in storm clusters,” in Proceedings of the IEEE 9th
International Conference on Cloud Computing, 2016, pp. 448–455.

[16] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging sys-
tem for log processing,” in Proceedings of 6th International Workshop
on Networking Meets Databases (NetDB), 2011.

[17] C. S, L. D, K. O, and et al, “Better bitmap performance with roaring
bitmap,” Software: practice and experiences, pp. 1–11, 2015.


