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Abstract—With the Internet becoming the dominant channel 

for business and life, web proxies are also increasingly used for 

illegal purposes such as propagating malware, impersonate 

phishing pages to steal sensitive data or redirect victims to other 

malicious targets.  

In this paper, using thousands of web proxy URLs crawled, we 

performed a large-scale study on the DOM (Document Object 

Model) structure features. Our study reveals the existence of the 

dedicated web proxy DOM among hosts that play orchestrating 

roles in proxy activities. Motivated by their distinctive features in 

DOM and URL, we developed an automatical stepping-stone 

detection system——ProxyDetector.  Specially, we explored the 

potential benefits of considering DOM-based features, which 

improved 25% recall rate than before.  We extensively evaluated 

ProxyDetector with four methods on a diverse spectrum of 

corpora with 2,068 web proxy sites and 26,066 legitimate sites.  

Capable of achieving over 95% precision of web proxy sites with 

a high recall rate of 96.5% on average, our ProxyDetector has been 

demonstrated to be an effective solution of detecting the web proxy 

sites. 
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I. INTRODUCTION  

 Today malicious web sites provide new opportunities to 
criminals who are rapidly industrializing their dark business 
over the Web [1]. And they are gradually becoming a 
cornerstone of Internet criminal activities supporting criminal 
enterprises such as spam-advertised commerce, financial fraud, 
and as a vector for propagating malware (e.g., so-called “drive-
by downloads”) [2].  Moreover, more and more attackers always 
hide their identity by varieties of evasion techniques escaping 
from censorship systems like “The Great Firewall” of China. As 
the GWI (global web index) Social report [25] shows, it’s 
Indonesia and Vietnam which lead the way (22% each), 
followed by China (20%), as shown in Fig.1. This trend is more 
and more pronounced in fast-growth markets. Over 90 million 
online adults in China have used one to access restricted social 
platforms. Many proxy servers steal and track users’ information 
for the sake of profits. And what’s more, we find that attackers 

mainly rely on two methods to conceal their footprints or 
circumvent the censor. One is encryption-based protocols and 
anonymous systems, e.g., Tor Browser, etc. So though current 
systems could meet their needs of providing covertness but 
unfortunately not deniability. The other method is stepping 
stones (i.e., proxy): launching attacks not from their own hosts 
but from intermediary hosts or servers which they previously 
compromised. So exists the same problem.  By proxy servers, 
attackers could anonymously surf the internet without revealing 
their own IP addresses.  Hence, stepping stone detection is much 
vital as well as other malicious attack detection because it’s quite 
flexible and can be used to perform any kind of attacks such 
phishing attacks, DoS (Denial-of-Service) attacks etc., which 
increasingly become a thorny issue. 

 

Fig 1. Proxy/VPN users based on the Internet users aged 16-64 

 

Staniford and Heberlein first demonstrated stepping stones 
detection in [3]. This approach is based on the packet’s content 
and vulnerable to encrypted stepping stones. Many existing 
solutions rely almost entirely on blacklisting. However, 
blacklists are not generally effective at preventing new or 
unknown stepping stones because the proxy sites have to be 
known before they can be added to a blacklist. Although 
blacklists are relatively “lowcost” on runtime, it takes a lot of 



time to add the rules, let alone the changing domains of web 
proxies regularly. On the other hand, heuristic-based detection 
employs common characteristics of web proxy sites, such as 
URL string and domain name information. However, these 
characteristics could be forged and the mechanism could not 
detect unknown web proxy sites, the same drawback as the 
blacklist. Researchers regard the stepping stone detections as the 
area of intrusion detection system (IDS) by creating Snort [4] 
rules, however the precision is relatively low. 

 

Fig.2 Web Proxy 

 

Certainly, there are many different types of proxies in 
different perspectives, such as the Web proxy, HTTP proxy, 
VPN, Tor and so on. In this paper, based on the captured 
network traffic, we present ProxyDetector, a novel system to 
automatically detect the the web proxies in real time. The 
advantages about online web proxy is that it is free. This means 
you can enjoy all the benefits offered by the proxy server 
without having to incur any costs. Just as shown in Fig.2, users 
only type the url which they want to visit, they will bypass the 
censorship to surf any resource unlimitedly. ProxyDetector 
analyzes the relay mechanisms and characteristics, making it a 
valuable tool to protect a variety of online services. In table 3 
(section V) we also compare with some methods used by some 
commercial product. 

Challenges: Due to the great progress in evasion 
mechanisms, such as web search cloaking, fast fluxing, and 
domain generation, etc., detecting the stepping stones is 
becoming more and more challenge. Unlike the normal servers, 
a large number of stepping stone hosts tend to be invisible, 
especially for the high anonymity mode as discussed before. In 
other words, traffic coming through a high anonymity stepping-
stone hosts will look just the same as the traffic not using any 
proxies. In this case, the client can completely hide its identity 
from the censored institution. What’s more, time-based method 
is limited by the Internet service condition and some malicious 
activities by attackers. Characteristic-based is to identify traffic 
characteristics that are invariant or at least highly correlated 
across stepping stones. That’s also vulnerable in varying traffic. 
On one hand, it is time-consuming on selecting the appropriate 
features. On the other hand, the features being trained change 
over time. The classifier should thus be able to learn the 
evolution of these variations. In machine learning parlance, we 

need a classifier that is adaptive to “concept drift” [14]. Some 
active measurement need employ additional packets to measure 
the the inter-arrival times or the delays on the network. However, 
such mechanism would not work in most of the proxy servers 
with default configurations. In the following sections, we will 
discuss how ProxyDetector copes with these challenges in 
details. 

Form dedicated web proxies. To gain further 
understanding of web proxies, we study multiplies of web proxy 
URLs and DOM structures, crawled from different feeds. Our 
key finding is the existence of a set of form structures that play 
orchestrating roles in the web proxy infrastructures. From the 
data we have, it is pretty well confirmed to be web proxy that 
the form structure has a set of distinctive features. Our approach 
starts with a relatively small set of known web proxies as seeds 
and a large number of known legitimate sites from Alexa top 
websites [26] as references, and then features are extracted 
combining the merits of URL-based and DOM-based methods. 
In the end, those classified as 1 by machine learning mechanisms 
are identified as web proxies.  

Contributions. The contributions of the paper are 
summarized as follows: 

 New findings. We conduct the first study on HTML-
DOMs dedicated to web proxy sites, and discover their 
pervasiveness in web proxy and the critical roles they 
play. Our study reveals their DOM features, especially 
improves the efficiency of the web feature extraction.  

 We implemented our techniques and evaluated it on a 
large set of web sites, demonstrating the approach is 
effective and improves the state of the art. 

  The rest of this paper proceeds as follows. In Section II, we 
present the problem. Section III gives the ProxyDetector in 
detail. In Section IV, the user study is shown. The related work 
is shown in Section V, especially regarding some commercial 
case. Finally, we conclude this paper in Section VI. 

II. PROBLEM FORMULATION 

In this section, we describe in detail the goals of our work. 

Goal. As mentioned previously, searching for the web proxy 
sites on the web is a three-step process: Crawl to collect URLs, 
extract the features, and use a machine learning algorithm to 
classify the URLs. Our goal is to improve the efficiency of the 
web feature extraction. More precisely, we have developed 
techniques that allow us to locate the unique DOM structure 
features which play important roles in web proxy services. With 
DOM structure, we refer to the Form field in the HTML DOM 
structure that points to web proxy pages. 

Our techniques are based on the idea of searching for pages 
with unique features that are similar to ones that are known to 
be web proxy sites. Intuitively, rather than extracting all web 
page content, ProxyDetector focuses its extraction from a page 
features that characterize its proxy nature; pages with similar 
values for Form field features in the DOM structure are likely to 
be web proxy sites.  

Our core contribution in this paper is to propose, implement, 
and evaluate a general methodology to identify the web proxies.   



     Host. In this paper, we call a host a “Client” if an application 
(e.g., a web browser, a mail agent, or an FTP client) is running 
on it and asking for certain services from a server. Also, we call 
a host a stepping stone(proxy node) if it accepts requests from a 
client and forwards them to another host. And we call a host a 
“Server” if it provides an Internet service to clients. Following 
this terminology, when a server accepts a request from a host, 
our ProxyDetector will be able to determine whether the host is 
a proxy or not. 

Stepping Stone. In this paper, we use the terms stepping 

stone and the web proxy interchangeably. Both refer to the 

intermediary host of a connection chain which provides relay 

service. On the other hand, both benign web sites and legitimate 

web sites mean non-web-proxy sites in this paper. 
We formulate the problem of web proxy detection as a 

binary classification task for two-class prediction: “web proxy” 
versus “benign”. Specifically, given a data set with N web proxy 
URL {(𝑢1, 𝑦1), … (𝑢𝑛, 𝑦𝑛)}  where 𝑢𝑛  for t = 1,2, … , n 
represents a web proxy URL from the training data, and  𝑦𝑛 ∈
(0,1) is the corresponding label where 𝑦𝑛 = 1 represents a web 
proxy URL and  𝑦𝑛 = 0  represents a benign URL. There are 
two aspects in the web proxy detection: 

1) Feature Extraction: For every web proxy page( or URL), 

we need to construct one dimensional feature vector as the input 

of the machine learning prediction. 

2) Machine Learning: Based on the feature vectors from lots 

of web proxy URLs, a prediction function will be learned for 

predicting the class assignment. 

 

Consider a binary classification task, the goal of the web 

proxy detection is to maximize the predictive accuracy. Both of 

the two aspects above are important for achieving the goal. 

While the first part of feature extraction is often based on the 

domain knowledge and heuristics, the second part focuses on 

the machine learning methods driven by datasets.   

We collect 2,068 web proxy sites and 26,066 legitimate 

sites. As a result, our system detects 98% of web proxy sites 

with a false-positive rate of 5% on average.  

III. PROXYDETECTOR SYSTEM 

In this section, we give a detailed description of our 
ProxyDetector System. We start an overview of how 
ProxyDetector works in section III-A. In section III-B, we 
discuss the ProxyMiner in detail. 

A. ProxyDetector System Overview 
The process of ProxyDetector can be broken down into two 

steps. The first step is to extract features as a feature 
representation of the web page from all relevant information 
about the URL. This process is the linchpin of our 
ProxyDetector for the accuracy. The second step is to train 
classification model via a data driven optimization approach for 
predictions.  

Fig. 3 presents the architecture of the ProxyDetector System. 
The initial step is to crawl many URLs based on our crawler and 
stores including URLs and their corresponding web pages. Then 
based on the Feature Extractor, we continually covert a URL 
into a feature vector, where several types of information can be 

considered and different techniques can be used. A feature 
representation is constructed by crawling all relevant 
information about the URL. These range from URL-based 
features (the words used in the URL, WHOIS info, etc.) to 
DOM-based features (forms info, action, etc.).  

 

Algorithm 1:  The Online Learning Procedure 

Input: the URLs 

Output: the prediction value ( 1: web proxy; 0: benign web sites)  

1:  sparse the web pages in terms of the URLs 

2: extract the features from the URLs and their corresponding web 

pages, construct the feature vectors.  

3:   train the models using the Scikit-learn platform. 

4:  predict the test datasets and update the prediction fuction if 

necessary. 

5:   return K 

 

Once the information is constructed, it is processed to be in 
a feature vector. After obtaining the feature vector in the Feature 
Extractor module for the collections of labelled data, a model 
can be trained in the Model Training module. And later, the 
models trained could be used to predict when new URLs arrived 
in Predictor module. The prediction result would be 1 if the web 
page is web proxy and 0 otherwise. After the prediction, the true 
class label is revealed to the model learner, and based on the loss 
suffered, the learner makes an update of the model in order to 
improve the predictions in the future. The general framework of 
our ProxyDetector is outlined in Algorithm 1. 
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Fig. 3  the process framework of the system 

B. ProxyDetector System Details 

Fig.3 illustrates the ProxyDetector’s working process. 

We’ll present in detail in this module. The main components 

of the generic module of the ProxyDetector are discussed 

below. 

1) URL/Web Content Store 

To precisely analyze and detect web proxy sites, it requires 

to continuously patrol the web and collect web sites. For this 

dataset collection task, we mainly rely on a web-scale crawler 

implemented by ourselves based on the Beautiful Soup [23] to 

crawl and collect web pages. For the URLs used in our system, 

we will describe in Section IV. 

2) Feature extractor 
We categorize the features that we gather for URLs as being 

either URL-based or DOM-based. 



URL-based features: URL-based features are the textual 
properties of the URL itself (not the content of the page of the 
page it references). The justification for using URL-based 
features is that URLs to web proxy sites tend to “look different” 
in the eyes of the users who see them. Hence, URL-based 
features provide us for web proxy site classification purposes.  

(1) Containing the digits. This feature examines if a URL 
has some digital numbers. In a more general case, 
checks if a page’s domain name is an IP address. 

(2) Number of sensitive words in URLs. We create this 
feature counting the number of the sensitive words that 
are found in the URLs. For example, “proxy”,”block” 
and “hide”. 

(3) Suspicious URL. As we observed, dashes(-) is often 
used by web proxy URLs. 

(4) Embedded domain. Web proxies sometimes add users’ 
target’s domain in the path segment to their URLs, such 
as http://rhe.rxxrh.com/http://www.google.com. The 
first part http is the web proxy, while the latter google is 
web proxy user’s target site. 

(5) Suspicious top level domain (TLD). Less common TLD 
appears in the web proxy sites, such as “xyz”, etc. 

(6) WHOIS properties. Most of web proxy sites have a 
short lifetime and change their domain address 
frequently to avoid being blocked by the blacklist. We 
use the WHOIS module in python to check the features 
of the domain’s expiration date. The average expiration 
is no less than 287 days after computing in our datasets. 
So the expiration time is set 287. 

DOM-based Features: Almost all web proxy sites try to 
trick people into typing their URLs limited by censorship or for 
concealing their identities through a submit form. Finding a web 
proxy form in practice is actually by no means trivial. For the 
high web proxy detection accuracy, we should guarantee that 
features are actually extracted from web proxy forms rather than 
other types of forms such as the common search form. To cope 
with such variations, we designed the following features to 
declare the existence of a web proxy form. 

(1) Bad forms. Web proxies are usually accomplished 
through HTML forms. Hence, this feature examines 
whether if a web page contains potential harmful HTML 
forms. For the definition of harmful, a web page is 
required to have all of the following: (a) an HTML form; 
(b) some <input> tags in the form. One type of the 
<input> is text and the other type checkbox. (c) 
keywords related to sensitive information like "Encrypt 
URL", "Encrypt Page", "Allow Cookies", "Remove 
Scripts" and "Remove Objects" within the scope of the 
HTML form. 

Form recognition is realized by the Beautiful Soup [23] 
using python parsers——lxml parser [28], binding for 
the C libraries libxml2 and libxslt. It is unique in that it 
combines the speed and XML feature completeness of 
these libraries with the simplicity of a native Python API, 
mostly compatible but superior to the well-known 
ElementTree API. Specifically, we defined five form-

related keywords as shown above to narrow down our 
focus to forms that truly request user private 
information. 

(2) Bad action fields. The action attribute points to the 
server side script (the ‘back end’) that handles the form 
submission. Usually, this will be a script (PHP,ASP, 
Perl) or a CGI program. The methods in the script on 
legitimate web sites are usually called via absolute 
URLs in the action field of the HTML form. However, 
the action field of the web proxy forms is typically a 
simple file name, or points to a domain different from 
the web proxy page domain.  

(3) Bad on-submit fields. As we know, web proxy sites are 
usually ephemeral and provide the relay service. The 
key function is achieved by the on-submit field in the 
form. Accordingly, this feature is set to 1 if the on-
submit field has some sensitive keywords, such as 
“return updateLocation(this)”.  

3) Web sites Classification 

We implemented ProxyDetecor with four classification 

algorithms, including Logistic Regression, Native Bayes, 

Support Vector Machines with linear kernel and RBF(Radial 

Based Function) kernel, respectively in Python Scikit-learn 

[29].  

Logistic Regression: This is a simple model for binary 

classification where examples are classified in terms of their 

distance form a hyperplane decision boundary. The decision 

rule is calculated based on the sigmoid function σ(x) =
[1 + 𝑒−𝑥]−1, which converts these distances into probabilities 

that feature vectors is positive or negative. The function is the 

following: 

                             y = σ(𝐰 ∙ x + b),                      (1) 

where the weight vector 𝐰 and scalar bias b are parameters to 

be estimated from training data. 

Bayes:  A Bayes classifier is most easily trained by 

computing the conditional probabilities as: 

 P(y = 0,1|x) =
𝑃(𝑥|𝑦)∙𝑃(𝑦)

𝑃(𝑥|𝑦 = 1)+𝑃(𝑥|𝑦=0)
            (2) 

The module parameters in Bayes are to maximize the joint log-

likelihood of features. 

     Support Vector Machine (SVM): SVMs are trained to 

maximize the margin of correct classification, which are robust 

to slight perturbations. The decision rule in SVMs is based on 

a kernel function which computes the similarity between 

features. In our study, we experienced with both linear and RBF 

kernels. 

IV. EVALUATION 

In this section, we evaluate the effectiveness of the 

classifiers on identifying web sites to web proxies. Specifically, 

we want to answer the following questions: Does using more 

features lead to more accurate classification? What is the most 

appropriate classification model for detecting the web proxy? 

In our experiment, we evaluate our ProxyDetector on a rich 

corpus with ten thousands of web pages from three feature sets: 

URL-based, DOM-based and “Full” features. And we 

conducted a thorough experiment with four different 



classification algorithms to inspect the generality of our method 

as well as its well-world performance. 

A. Methodology 

The experiment runs on a machine with Intel(R) Xeon(R) CPU 

E5-2682 v4 @ 2.50GHz processors. We implemented four 

classification algorithms, including Logistic Regression, Native 

Bayes, Support Vector Machines with linear kernel and 

RBF(Radial Based Function) kernel, respectively in Python 

scikit-learn [29]. All the train/test was split randomly. To 

evaluate the impact of the percentage of web proxy sites in the 

training data on the detection performance, we built a series of 

randomly selected training sets varying from 20% to 70%. To 

reduce random variation and avoid lucky train/test splits, we 

used the average statistics over 10 runs for each dataset in all 

our experiments.  

B. Data Sets 

This section describes the data sets that we use for our 

evaluation.  

Web proxy sites are usually ephemeral, and most pages will 

not last more than one week typically because they are taken 

down by administrators to avoid tracking. To fully study our 

approach over a larger corpus, we crawled and downloaded the 

web proxy sites pages when they are still live and conducted 

our experiment in an offline mode. Our downloader employed 

the urllib.request module in python to render the web pages. 

There’re two different sources of data to train our classifier: 

a benign set of websites and a ground truth stepping-stone 

blacklist. 

Benign sites: For benign URLs, we collect top 26,066 sites 

from Alexa lists [26]. In this case, our assumption was that 

these extremely popular web sites are legitimate. 

Stepping-stone blacklists. The list consists of some known 

proxy systems, such as anonymster [27], proxy4free [30], 

PHPProxy, CGIProxy, and Glype [17], and some others posted 

by some forums and institutions (i.e, proxy URLs in the 

BlackLists [16] ) .  

C. Feature Comparison 

In our experiments, we adopted precision rate and recall rate 
as the main evaluation metrics, which are standard metrics in 
evaluating the classification. We also used the F1 measure, 
which integrates both TP (True positive rate) and FP (False 
positive rate) with equal weights into one summary statistic. 
During tuning the models, we adopted the concept of ROC  
(receiver operating characteristic curve) and employed the area 
under the ROC curve (AUC) metric, which is a good summary 
statistic for model comparison.  

Our first experiments on web sites classification were 
designed to explore the potential benefits of considering 
different features. Obtaining different features requires different 
overhead and difficulty. Fig.4 shows the results of the 
classification as an ROC (receiver operating characteristic curve) 
graph using three different sets of features: URL-based features, 
DOM-based features and the Full features, combining URL-
based features with DOM-based features. We can see that the 
full-featured classifier predicts web proxy sites with much better 
accuracy than with URL-based features and DOM-based 

features alone, correspondingly. For brevity, we only show 
detailed results from logistic regression, due to the qualitatively 
similar results produced by the other classifiers.  

 

Fig.4.  ROC with different sets of features 

Referencing the overall rate from the Fig.4, more concretely, 
Table 1 shows the different feature extraction time-consuming 
in each feature set. The feature set consists of three features: the 
URL-based features, the DOM-based features and the “Full” 
features. We can find obtaining features with DOM-based 
features acquires a high collection time than that with URL-
based features.  However, the recall rate and F1-score with 
DOM-based features are much higher than that only using the 
URL-based features. Consequently, based on the “Full” feature 
set, combining the URL-based features and DOM-based 
features as shown in Table 1, we obtain the best classification 
performance. 

Table 1 compares the classification rates on the three feature sets 

and shows their effects on classification accuracy.  

Feature set Extract Time 

(seconds) 
Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

URL 39.53 96 71.5 82 

DOM 1099.35 93.75 78.75 85 

FULL 1143.24 95 96.5 95.25 

D. Classifier Comparison 

Note that we build four different models that operate on the 

three different feature sets that we have defined previously 

(URL-based features, DOM-based features and the FULL 

features). We have evaluated the effectiveness of individual 

feature set using one models as the previous section. In this 

section, we could evaluate with different machine learning 

models. We train our detection models from datasets using the 

Scikit-learn machine learning platform. We conducted with 

four standard models, as shown above. In order to choose a 

suitable classifier (i.e., the one providing the high precision and 

recall rate and a reasonably small amount of time-consuming), 

we trained our datasets to build several models, each with a 

different classifier and/or different parameters. 

 



 
Table 2.  detection results with different methods 

Feature 

class 

Method TrainingTime 

(seconds) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

 

URL LR 0.02 97 71 0.82 

Bayes 0.01 95 72 0.82 

SVM-

linear 

1.28 95 72 0.82 

SVM-

RBF 

2.82 97 71 0.82 

Average 1.03 96 71.5 0.82 

Std. 1.33 1.15 0.577 0 

DOM LR 0.02 97 77 86 

Bayes 0.01 81 82 81 

SVM-
linear 

1.28 97 78 86 

SVM-

RBF 

2.82 100 78 87 

Average 1.03 93.75 78.75 85 

Std. 2.33 8.62 2.22 2.71 

FULL LR 0.03 99 96 0.97 

Bayes 0.01 83 98 0.90 

SVM-

linear 

0.49 99 96 0.97 

SVM-
RBF 

1.43 99 96 0.97 

Average 0.49 95 96.5 0.95 

Std. 0.66 8 1 0.035 

 

The results for the three feature sets with four machine 

learning methods are presented in Table 2. It can be seen that 

the classifiers which produced the best values were the LR and 

Bayes for the URL-based features (almost the same), LR for the 

DOM-based features and LR for the “FULL” features. The 

training time is not including the feature extraction time ( we 

can see the results in Table 1). Hence, Logistic Regression (LR) 

performed the best consistently among the four algorithms 

through extensive experiment results. In particular, LR gained 

an over 16% improvement over Bayes on precision rate. 

 What’s more, combining all features for the four models 

substantially improves the detection recall rate. Notably, our 

experiments shows a precision of about 95%, and recall 96.5% 

in average. 

V. RELATED WORK 

In this section, we give a detailed description of the related 
work from two aspects: academic and industry study. 

In present academic study, signature-based and characteristic-
based methods are two main stepping stones detection 
mechanism. The former is based on content, such as thumbprints 
[3] and watermarks [5], etc. Thumbprint creates a signature by 
matching some attributes of the packets or packet flows to detect 
the stepping stones. Watermark scheme injects a watermark in 
the incoming flow at a host connecting to server and checks if it 
exists on the outgoing flow, if yes this indicates that is a stepping 
stone host else a normal host.  However, that is challenging on 
the encrypted traffic. The latter approaches are based on 
analyzing the packet transmission characteristics. Specially, 

Vahid [6] uses a machine learning based approach on different 
types of traffic logs to identify the incoming stepping stones base 
traffic on the server side. Rueimin [7] proposes a server-based 
scheme to detect whether a host establishes a TCP connection to 
the server is a stepping stone or not by analyzing RTT (Round-
Trip Time). But the RTT is sensitive to network fluctuation and 
will differ between local traffic and traffic that traverses the 
WAN (Wide Area Network). There are certain characteristics of 
network traffic such as packet size, packet timestamp, ON/OFF 
periods, inter-packet delay, etc., which can help to detect 
stepping stone hosts [8], [9], [10], [11].  

Table 3. Comparison of related applications using various detection 
mechanisms 

method 
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IP2Proxy   √   √ 

Snort     √  

MaxMind  √     

CIPAFilter √      

ProxyDetector √   √   

 

Stepping stones detection varies from the applications [6]. 
Sometimes we could detect the stepping stones by analyzing 
HTTP headers(X-Forwarded-For), but that doesn’t work all the 
time, because this is an optional header. What’s more, 
Signature-based method is limited by the extraction of the 
features dynamically. The heuristic method is generally 
effective at preventing known stepping stones [17]. Hence, the 
tradeoff between the robustness and extendibility of the 
signature provides new challenges to the stepping stone 
detection. Although watermark mechanism is not vulnerable to 
chaff and timing perturbation, it assumes the message content 
cannot be encrypted and such active processing would require 
host access or control in order to make such modifications. That 
is unrealistic. On the other hand, characteristic-based method is 
chiefly composed of time-based and content-based. The time-
based could have negative impacts on time sensitive traffic and 
is difficult to compute in a reliable and sufficient way. Many 
other characteristics are studied by researchers to detect the 
stepping stones using Machine Learning. However, these 
identified traffic characteristics are invariant when the classifiers 
have been trained. Furthermore, these methods couldn’t do 
anything for the encrypted stepping stones. So building a 
classifier that is adaptive to “feature concept drift” [14] and to 
encryption (using the HTTPS protocol, etc.) is getting more and 
more essential. 

In industry, there are also some commercial solutions for the 
stepping stones detection. Lots of examples and a comparison of 
what methods are used are presented in Table 2. These methods 
include URL list, IP filters, Packet analysis, HTTP head filters, 
pre-defined rules and IP geo-location. IP2Proxy [19] analyses 
the HTTP header X-Forwarded-For for spotting proxy traffic. 
However this is an optional header. CIPAFilter [20] compares 



URLs with a list of known proxy websites and then blocks. The 
method needs to be updated over the time. MaxMind [21] uses 
the IP list to offer the detection service. This however runs into 
the same problem as using a URL list.  

Generally, mainstream methods utilize common features for 
the stepping stone detection, few studies consider the difference 
features of web proxy sites. We incorporate some methods about 
malicious web pages detection [24] into web proxy detection, 
and add the special DOM-based features. And finally, our 
ProxyDetector is demonstrated to be very effective for web 
proxy detection by our experiment and is the primary 
contribution of our work in this paper. 

VI. CONCLUSION 

In this paper, we proposed a novel system named 

ProxyDetector for automatically detecting the stepping stones 

based on the URLs crawled in real time. There’s tremendous 

value in aiding the forensic analysis of web traffic traces, for 

example to help in the investigation of the user-browser 

interactions in real time. To protect end users form visiting 

abandoned sites or monitor end users using stepping stones, we 

can attempt to identify suspicious web proxies’ URLs by 

blacklists or their corresponding lexical and host-based features. 

A particular challenge in this domain is that web proxies are 

constantly evolving in a dynamic landscape. To prevail in this 

contest, we experimented with different approaches for 

detecting the stepping stones.  

Through our experiments, we show that ProxyDetector can 

correctly detecting the stepping stones with high true positive 

and low false positive, and that it outperforms a previously 

proposed URL-based approach. 

The future work includes how to dig more available 

abnormal behavior features hiding with malicious surfing using 

stepping stones. For example, some false negative cases should 

be considered (i.e, one user may first login on one local CDN, 

then connect to the proxy node).  
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