

ProxyDetector: A Guided Approach to Finding Web

Proxies

Zhipeng Chen, Peng Zhang, Qingyun Liu

Institute of Information Engineering, School of Cyber Security

University of Chinese Academy of Sciences

 Beijing, China

{chenzhipeng, pengzhang, liuqingyun }@iie.ac.cn

Abstract—With the Internet becoming the dominant channel

for business and life, web proxies are also increasingly used for

illegal purposes such as propagating malware, impersonate

phishing pages to steal sensitive data or redirect victims to other

malicious targets.

In this paper, using thousands of web proxy URLs crawled, we

performed a large-scale study on the DOM (Document Object

Model) structure features. Our study reveals the existence of the

dedicated web proxy DOM among hosts that play orchestrating

roles in proxy activities. Motivated by their distinctive features in

DOM and URL, we developed an automatical stepping-stone

detection system——ProxyDetector. Specially, we explored the

potential benefits of considering DOM-based features, which

improved 25% recall rate than before. We extensively evaluated

ProxyDetector with four methods on a diverse spectrum of

corpora with 2,068 web proxy sites and 26,066 legitimate sites.

Capable of achieving over 95% precision of web proxy sites with

a high recall rate of 96.5% on average, our ProxyDetector has been

demonstrated to be an effective solution of detecting the web proxy

sites.

Keywords—DOM-based features, web proxy detection

I. INTRODUCTION

 Today malicious web sites provide new opportunities to
criminals who are rapidly industrializing their dark business
over the Web [1]. And they are gradually becoming a
cornerstone of Internet criminal activities supporting criminal
enterprises such as spam-advertised commerce, financial fraud,
and as a vector for propagating malware (e.g., so-called “drive-
by downloads”) [2]. Moreover, more and more attackers always
hide their identity by varieties of evasion techniques escaping
from censorship systems like “The Great Firewall” of China. As
the GWI (global web index) Social report [25] shows, it’s
Indonesia and Vietnam which lead the way (22% each),
followed by China (20%), as shown in Fig.1. This trend is more
and more pronounced in fast-growth markets. Over 90 million
online adults in China have used one to access restricted social
platforms. Many proxy servers steal and track users’ information
for the sake of profits. And what’s more, we find that attackers

mainly rely on two methods to conceal their footprints or
circumvent the censor. One is encryption-based protocols and
anonymous systems, e.g., Tor Browser, etc. So though current
systems could meet their needs of providing covertness but
unfortunately not deniability. The other method is stepping
stones (i.e., proxy): launching attacks not from their own hosts
but from intermediary hosts or servers which they previously
compromised. So exists the same problem. By proxy servers,
attackers could anonymously surf the internet without revealing
their own IP addresses. Hence, stepping stone detection is much
vital as well as other malicious attack detection because it’s quite
flexible and can be used to perform any kind of attacks such
phishing attacks, DoS (Denial-of-Service) attacks etc., which
increasingly become a thorny issue.

Fig 1. Proxy/VPN users based on the Internet users aged 16-64

Staniford and Heberlein first demonstrated stepping stones
detection in [3]. This approach is based on the packet’s content
and vulnerable to encrypted stepping stones. Many existing
solutions rely almost entirely on blacklisting. However,
blacklists are not generally effective at preventing new or
unknown stepping stones because the proxy sites have to be
known before they can be added to a blacklist. Although
blacklists are relatively “lowcost” on runtime, it takes a lot of

time to add the rules, let alone the changing domains of web
proxies regularly. On the other hand, heuristic-based detection
employs common characteristics of web proxy sites, such as
URL string and domain name information. However, these
characteristics could be forged and the mechanism could not
detect unknown web proxy sites, the same drawback as the
blacklist. Researchers regard the stepping stone detections as the
area of intrusion detection system (IDS) by creating Snort [4]
rules, however the precision is relatively low.

Fig.2 Web Proxy

Certainly, there are many different types of proxies in
different perspectives, such as the Web proxy, HTTP proxy,
VPN, Tor and so on. In this paper, based on the captured
network traffic, we present ProxyDetector, a novel system to
automatically detect the the web proxies in real time. The
advantages about online web proxy is that it is free. This means
you can enjoy all the benefits offered by the proxy server
without having to incur any costs. Just as shown in Fig.2, users
only type the url which they want to visit, they will bypass the
censorship to surf any resource unlimitedly. ProxyDetector
analyzes the relay mechanisms and characteristics, making it a
valuable tool to protect a variety of online services. In table 3
(section V) we also compare with some methods used by some
commercial product.

Challenges: Due to the great progress in evasion
mechanisms, such as web search cloaking, fast fluxing, and
domain generation, etc., detecting the stepping stones is
becoming more and more challenge. Unlike the normal servers,
a large number of stepping stone hosts tend to be invisible,
especially for the high anonymity mode as discussed before. In
other words, traffic coming through a high anonymity stepping-
stone hosts will look just the same as the traffic not using any
proxies. In this case, the client can completely hide its identity
from the censored institution. What’s more, time-based method
is limited by the Internet service condition and some malicious
activities by attackers. Characteristic-based is to identify traffic
characteristics that are invariant or at least highly correlated
across stepping stones. That’s also vulnerable in varying traffic.
On one hand, it is time-consuming on selecting the appropriate
features. On the other hand, the features being trained change
over time. The classifier should thus be able to learn the
evolution of these variations. In machine learning parlance, we

need a classifier that is adaptive to “concept drift” [14]. Some
active measurement need employ additional packets to measure
the the inter-arrival times or the delays on the network. However,
such mechanism would not work in most of the proxy servers
with default configurations. In the following sections, we will
discuss how ProxyDetector copes with these challenges in
details.

Form dedicated web proxies. To gain further
understanding of web proxies, we study multiplies of web proxy
URLs and DOM structures, crawled from different feeds. Our
key finding is the existence of a set of form structures that play
orchestrating roles in the web proxy infrastructures. From the
data we have, it is pretty well confirmed to be web proxy that
the form structure has a set of distinctive features. Our approach
starts with a relatively small set of known web proxies as seeds
and a large number of known legitimate sites from Alexa top
websites [26] as references, and then features are extracted
combining the merits of URL-based and DOM-based methods.
In the end, those classified as 1 by machine learning mechanisms
are identified as web proxies.

Contributions. The contributions of the paper are
summarized as follows:

 New findings. We conduct the first study on HTML-
DOMs dedicated to web proxy sites, and discover their
pervasiveness in web proxy and the critical roles they
play. Our study reveals their DOM features, especially
improves the efficiency of the web feature extraction.

 We implemented our techniques and evaluated it on a
large set of web sites, demonstrating the approach is
effective and improves the state of the art.

 The rest of this paper proceeds as follows. In Section II, we
present the problem. Section III gives the ProxyDetector in
detail. In Section IV, the user study is shown. The related work
is shown in Section V, especially regarding some commercial
case. Finally, we conclude this paper in Section VI.

II. PROBLEM FORMULATION

In this section, we describe in detail the goals of our work.

Goal. As mentioned previously, searching for the web proxy
sites on the web is a three-step process: Crawl to collect URLs,
extract the features, and use a machine learning algorithm to
classify the URLs. Our goal is to improve the efficiency of the
web feature extraction. More precisely, we have developed
techniques that allow us to locate the unique DOM structure
features which play important roles in web proxy services. With
DOM structure, we refer to the Form field in the HTML DOM
structure that points to web proxy pages.

Our techniques are based on the idea of searching for pages
with unique features that are similar to ones that are known to
be web proxy sites. Intuitively, rather than extracting all web
page content, ProxyDetector focuses its extraction from a page
features that characterize its proxy nature; pages with similar
values for Form field features in the DOM structure are likely to
be web proxy sites.

Our core contribution in this paper is to propose, implement,
and evaluate a general methodology to identify the web proxies.

 Host. In this paper, we call a host a “Client” if an application
(e.g., a web browser, a mail agent, or an FTP client) is running
on it and asking for certain services from a server. Also, we call
a host a stepping stone(proxy node) if it accepts requests from a
client and forwards them to another host. And we call a host a
“Server” if it provides an Internet service to clients. Following
this terminology, when a server accepts a request from a host,
our ProxyDetector will be able to determine whether the host is
a proxy or not.

Stepping Stone. In this paper, we use the terms stepping

stone and the web proxy interchangeably. Both refer to the

intermediary host of a connection chain which provides relay

service. On the other hand, both benign web sites and legitimate

web sites mean non-web-proxy sites in this paper.
We formulate the problem of web proxy detection as a

binary classification task for two-class prediction: “web proxy”
versus “benign”. Specifically, given a data set with N web proxy
URL {(𝑢1, 𝑦1), … (𝑢𝑛, 𝑦𝑛)} where 𝑢𝑛 for t = 1,2, … , n
represents a web proxy URL from the training data, and 𝑦𝑛 ∈
(0,1) is the corresponding label where 𝑦𝑛 = 1 represents a web
proxy URL and 𝑦𝑛 = 0 represents a benign URL. There are
two aspects in the web proxy detection:

1) Feature Extraction: For every web proxy page(or URL),

we need to construct one dimensional feature vector as the input

of the machine learning prediction.

2) Machine Learning: Based on the feature vectors from lots

of web proxy URLs, a prediction function will be learned for

predicting the class assignment.

Consider a binary classification task, the goal of the web

proxy detection is to maximize the predictive accuracy. Both of

the two aspects above are important for achieving the goal.

While the first part of feature extraction is often based on the

domain knowledge and heuristics, the second part focuses on

the machine learning methods driven by datasets.

We collect 2,068 web proxy sites and 26,066 legitimate

sites. As a result, our system detects 98% of web proxy sites

with a false-positive rate of 5% on average.

III. PROXYDETECTOR SYSTEM

In this section, we give a detailed description of our
ProxyDetector System. We start an overview of how
ProxyDetector works in section III-A. In section III-B, we
discuss the ProxyMiner in detail.

A. ProxyDetector System Overview
The process of ProxyDetector can be broken down into two

steps. The first step is to extract features as a feature
representation of the web page from all relevant information
about the URL. This process is the linchpin of our
ProxyDetector for the accuracy. The second step is to train
classification model via a data driven optimization approach for
predictions.

Fig. 3 presents the architecture of the ProxyDetector System.
The initial step is to crawl many URLs based on our crawler and
stores including URLs and their corresponding web pages. Then
based on the Feature Extractor, we continually covert a URL
into a feature vector, where several types of information can be

considered and different techniques can be used. A feature
representation is constructed by crawling all relevant
information about the URL. These range from URL-based
features (the words used in the URL, WHOIS info, etc.) to
DOM-based features (forms info, action, etc.).

Algorithm 1: The Online Learning Procedure

Input: the URLs

Output: the prediction value (1: web proxy; 0: benign web sites)

1: sparse the web pages in terms of the URLs

2: extract the features from the URLs and their corresponding web

pages, construct the feature vectors.

3: train the models using the Scikit-learn platform.

4: predict the test datasets and update the prediction fuction if

necessary.

5: return K

Once the information is constructed, it is processed to be in
a feature vector. After obtaining the feature vector in the Feature
Extractor module for the collections of labelled data, a model
can be trained in the Model Training module. And later, the
models trained could be used to predict when new URLs arrived
in Predictor module. The prediction result would be 1 if the web
page is web proxy and 0 otherwise. After the prediction, the true
class label is revealed to the model learner, and based on the loss
suffered, the learner makes an update of the model in order to
improve the predictions in the future. The general framework of
our ProxyDetector is outlined in Algorithm 1.

WWW

URL/Web Content Store

crawling

Feature Extractor

URL
DOM

live web

parsing

live web

Features

Collection of

Labeled Data
Model Training

Training

Predictor

+ web proxy

- benign

Online

Update

Fig. 3 the process framework of the system

B. ProxyDetector System Details

Fig.3 illustrates the ProxyDetector’s working process.

We’ll present in detail in this module. The main components

of the generic module of the ProxyDetector are discussed

below.

1) URL/Web Content Store

To precisely analyze and detect web proxy sites, it requires

to continuously patrol the web and collect web sites. For this

dataset collection task, we mainly rely on a web-scale crawler

implemented by ourselves based on the Beautiful Soup [23] to

crawl and collect web pages. For the URLs used in our system,

we will describe in Section IV.

2) Feature extractor
We categorize the features that we gather for URLs as being

either URL-based or DOM-based.

URL-based features: URL-based features are the textual
properties of the URL itself (not the content of the page of the
page it references). The justification for using URL-based
features is that URLs to web proxy sites tend to “look different”
in the eyes of the users who see them. Hence, URL-based
features provide us for web proxy site classification purposes.

(1) Containing the digits. This feature examines if a URL
has some digital numbers. In a more general case,
checks if a page’s domain name is an IP address.

(2) Number of sensitive words in URLs. We create this
feature counting the number of the sensitive words that
are found in the URLs. For example, “proxy”,”block”
and “hide”.

(3) Suspicious URL. As we observed, dashes(-) is often
used by web proxy URLs.

(4) Embedded domain. Web proxies sometimes add users’
target’s domain in the path segment to their URLs, such
as http://rhe.rxxrh.com/http://www.google.com. The
first part http is the web proxy, while the latter google is
web proxy user’s target site.

(5) Suspicious top level domain (TLD). Less common TLD
appears in the web proxy sites, such as “xyz”, etc.

(6) WHOIS properties. Most of web proxy sites have a
short lifetime and change their domain address
frequently to avoid being blocked by the blacklist. We
use the WHOIS module in python to check the features
of the domain’s expiration date. The average expiration
is no less than 287 days after computing in our datasets.
So the expiration time is set 287.

DOM-based Features: Almost all web proxy sites try to
trick people into typing their URLs limited by censorship or for
concealing their identities through a submit form. Finding a web
proxy form in practice is actually by no means trivial. For the
high web proxy detection accuracy, we should guarantee that
features are actually extracted from web proxy forms rather than
other types of forms such as the common search form. To cope
with such variations, we designed the following features to
declare the existence of a web proxy form.

(1) Bad forms. Web proxies are usually accomplished
through HTML forms. Hence, this feature examines
whether if a web page contains potential harmful HTML
forms. For the definition of harmful, a web page is
required to have all of the following: (a) an HTML form;
(b) some <input> tags in the form. One type of the
<input> is text and the other type checkbox. (c)
keywords related to sensitive information like "Encrypt
URL", "Encrypt Page", "Allow Cookies", "Remove
Scripts" and "Remove Objects" within the scope of the
HTML form.

Form recognition is realized by the Beautiful Soup [23]
using python parsers——lxml parser [28], binding for
the C libraries libxml2 and libxslt. It is unique in that it
combines the speed and XML feature completeness of
these libraries with the simplicity of a native Python API,
mostly compatible but superior to the well-known
ElementTree API. Specifically, we defined five form-

related keywords as shown above to narrow down our
focus to forms that truly request user private
information.

(2) Bad action fields. The action attribute points to the
server side script (the ‘back end’) that handles the form
submission. Usually, this will be a script (PHP,ASP,
Perl) or a CGI program. The methods in the script on
legitimate web sites are usually called via absolute
URLs in the action field of the HTML form. However,
the action field of the web proxy forms is typically a
simple file name, or points to a domain different from
the web proxy page domain.

(3) Bad on-submit fields. As we know, web proxy sites are
usually ephemeral and provide the relay service. The
key function is achieved by the on-submit field in the
form. Accordingly, this feature is set to 1 if the on-
submit field has some sensitive keywords, such as
“return updateLocation(this)”.

3) Web sites Classification

We implemented ProxyDetecor with four classification

algorithms, including Logistic Regression, Native Bayes,

Support Vector Machines with linear kernel and RBF(Radial

Based Function) kernel, respectively in Python Scikit-learn

[29].

Logistic Regression: This is a simple model for binary

classification where examples are classified in terms of their

distance form a hyperplane decision boundary. The decision

rule is calculated based on the sigmoid function σ(x) =
[1 + 𝑒−𝑥]−1, which converts these distances into probabilities

that feature vectors is positive or negative. The function is the

following:

 y = σ(𝐰 ∙ x + b), (1)

where the weight vector 𝐰 and scalar bias b are parameters to

be estimated from training data.

Bayes: A Bayes classifier is most easily trained by

computing the conditional probabilities as:

 P(y = 0,1|x) =
𝑃(𝑥|𝑦)∙𝑃(𝑦)

𝑃(𝑥|𝑦 = 1)+𝑃(𝑥|𝑦=0)
 (2)

The module parameters in Bayes are to maximize the joint log-

likelihood of features.

 Support Vector Machine (SVM): SVMs are trained to

maximize the margin of correct classification, which are robust

to slight perturbations. The decision rule in SVMs is based on

a kernel function which computes the similarity between

features. In our study, we experienced with both linear and RBF

kernels.

IV. EVALUATION

In this section, we evaluate the effectiveness of the

classifiers on identifying web sites to web proxies. Specifically,

we want to answer the following questions: Does using more

features lead to more accurate classification? What is the most

appropriate classification model for detecting the web proxy?

In our experiment, we evaluate our ProxyDetector on a rich

corpus with ten thousands of web pages from three feature sets:

URL-based, DOM-based and “Full” features. And we

conducted a thorough experiment with four different

classification algorithms to inspect the generality of our method

as well as its well-world performance.

A. Methodology

The experiment runs on a machine with Intel(R) Xeon(R) CPU

E5-2682 v4 @ 2.50GHz processors. We implemented four

classification algorithms, including Logistic Regression, Native

Bayes, Support Vector Machines with linear kernel and

RBF(Radial Based Function) kernel, respectively in Python

scikit-learn [29]. All the train/test was split randomly. To

evaluate the impact of the percentage of web proxy sites in the

training data on the detection performance, we built a series of

randomly selected training sets varying from 20% to 70%. To

reduce random variation and avoid lucky train/test splits, we

used the average statistics over 10 runs for each dataset in all

our experiments.

B. Data Sets

This section describes the data sets that we use for our

evaluation.

Web proxy sites are usually ephemeral, and most pages will

not last more than one week typically because they are taken

down by administrators to avoid tracking. To fully study our

approach over a larger corpus, we crawled and downloaded the

web proxy sites pages when they are still live and conducted

our experiment in an offline mode. Our downloader employed

the urllib.request module in python to render the web pages.

There’re two different sources of data to train our classifier:

a benign set of websites and a ground truth stepping-stone

blacklist.

Benign sites: For benign URLs, we collect top 26,066 sites

from Alexa lists [26]. In this case, our assumption was that

these extremely popular web sites are legitimate.

Stepping-stone blacklists. The list consists of some known

proxy systems, such as anonymster [27], proxy4free [30],

PHPProxy, CGIProxy, and Glype [17], and some others posted

by some forums and institutions (i.e, proxy URLs in the

BlackLists [16]) .

C. Feature Comparison

In our experiments, we adopted precision rate and recall rate
as the main evaluation metrics, which are standard metrics in
evaluating the classification. We also used the F1 measure,
which integrates both TP (True positive rate) and FP (False
positive rate) with equal weights into one summary statistic.
During tuning the models, we adopted the concept of ROC
(receiver operating characteristic curve) and employed the area
under the ROC curve (AUC) metric, which is a good summary
statistic for model comparison.

Our first experiments on web sites classification were
designed to explore the potential benefits of considering
different features. Obtaining different features requires different
overhead and difficulty. Fig.4 shows the results of the
classification as an ROC (receiver operating characteristic curve)
graph using three different sets of features: URL-based features,
DOM-based features and the Full features, combining URL-
based features with DOM-based features. We can see that the
full-featured classifier predicts web proxy sites with much better
accuracy than with URL-based features and DOM-based

features alone, correspondingly. For brevity, we only show
detailed results from logistic regression, due to the qualitatively
similar results produced by the other classifiers.

Fig.4. ROC with different sets of features

Referencing the overall rate from the Fig.4, more concretely,
Table 1 shows the different feature extraction time-consuming
in each feature set. The feature set consists of three features: the
URL-based features, the DOM-based features and the “Full”
features. We can find obtaining features with DOM-based
features acquires a high collection time than that with URL-
based features. However, the recall rate and F1-score with
DOM-based features are much higher than that only using the
URL-based features. Consequently, based on the “Full” feature
set, combining the URL-based features and DOM-based
features as shown in Table 1, we obtain the best classification
performance.

Table 1 compares the classification rates on the three feature sets

and shows their effects on classification accuracy.

Feature set Extract Time

(seconds)
Precision

(%)

Recall

(%)

F1-score

(%)

URL 39.53 96 71.5 82

DOM 1099.35 93.75 78.75 85

FULL 1143.24 95 96.5 95.25

D. Classifier Comparison

Note that we build four different models that operate on the

three different feature sets that we have defined previously

(URL-based features, DOM-based features and the FULL

features). We have evaluated the effectiveness of individual

feature set using one models as the previous section. In this

section, we could evaluate with different machine learning

models. We train our detection models from datasets using the

Scikit-learn machine learning platform. We conducted with

four standard models, as shown above. In order to choose a

suitable classifier (i.e., the one providing the high precision and

recall rate and a reasonably small amount of time-consuming),

we trained our datasets to build several models, each with a

different classifier and/or different parameters.

Table 2. detection results with different methods

Feature

class

Method TrainingTime

(seconds)

Precision

(%)

Recall

(%)

F1-

score

URL LR 0.02 97 71 0.82

Bayes 0.01 95 72 0.82

SVM-

linear

1.28 95 72 0.82

SVM-

RBF

2.82 97 71 0.82

Average 1.03 96 71.5 0.82

Std. 1.33 1.15 0.577 0

DOM LR 0.02 97 77 86

Bayes 0.01 81 82 81

SVM-
linear

1.28 97 78 86

SVM-

RBF

2.82 100 78 87

Average 1.03 93.75 78.75 85

Std. 2.33 8.62 2.22 2.71

FULL LR 0.03 99 96 0.97

Bayes 0.01 83 98 0.90

SVM-

linear

0.49 99 96 0.97

SVM-
RBF

1.43 99 96 0.97

Average 0.49 95 96.5 0.95

Std. 0.66 8 1 0.035

The results for the three feature sets with four machine

learning methods are presented in Table 2. It can be seen that

the classifiers which produced the best values were the LR and

Bayes for the URL-based features (almost the same), LR for the

DOM-based features and LR for the “FULL” features. The

training time is not including the feature extraction time (we

can see the results in Table 1). Hence, Logistic Regression (LR)

performed the best consistently among the four algorithms

through extensive experiment results. In particular, LR gained

an over 16% improvement over Bayes on precision rate.

 What’s more, combining all features for the four models

substantially improves the detection recall rate. Notably, our

experiments shows a precision of about 95%, and recall 96.5%

in average.

V. RELATED WORK

In this section, we give a detailed description of the related
work from two aspects: academic and industry study.

In present academic study, signature-based and characteristic-
based methods are two main stepping stones detection
mechanism. The former is based on content, such as thumbprints
[3] and watermarks [5], etc. Thumbprint creates a signature by
matching some attributes of the packets or packet flows to detect
the stepping stones. Watermark scheme injects a watermark in
the incoming flow at a host connecting to server and checks if it
exists on the outgoing flow, if yes this indicates that is a stepping
stone host else a normal host. However, that is challenging on
the encrypted traffic. The latter approaches are based on
analyzing the packet transmission characteristics. Specially,

Vahid [6] uses a machine learning based approach on different
types of traffic logs to identify the incoming stepping stones base
traffic on the server side. Rueimin [7] proposes a server-based
scheme to detect whether a host establishes a TCP connection to
the server is a stepping stone or not by analyzing RTT (Round-
Trip Time). But the RTT is sensitive to network fluctuation and
will differ between local traffic and traffic that traverses the
WAN (Wide Area Network). There are certain characteristics of
network traffic such as packet size, packet timestamp, ON/OFF
periods, inter-packet delay, etc., which can help to detect
stepping stone hosts [8], [9], [10], [11].

Table 3. Comparison of related applications using various detection
mechanisms

method

name U
R

L
 b

la
ck

li
st

IP
 f

il
te

r

H
T

T
P

h

ea
d

er

fi
lt

er

M
a

ch
in

e

L
ea

r
n

in
g

P
r
e-

d
e
fi

n
e
d

r
u

le
s

IP

g
eo

-

lo
ca

ti
o

n

IP2Proxy √ √

Snort √

MaxMind √

CIPAFilter √

ProxyDetector √ √

Stepping stones detection varies from the applications [6].
Sometimes we could detect the stepping stones by analyzing
HTTP headers(X-Forwarded-For), but that doesn’t work all the
time, because this is an optional header. What’s more,
Signature-based method is limited by the extraction of the
features dynamically. The heuristic method is generally
effective at preventing known stepping stones [17]. Hence, the
tradeoff between the robustness and extendibility of the
signature provides new challenges to the stepping stone
detection. Although watermark mechanism is not vulnerable to
chaff and timing perturbation, it assumes the message content
cannot be encrypted and such active processing would require
host access or control in order to make such modifications. That
is unrealistic. On the other hand, characteristic-based method is
chiefly composed of time-based and content-based. The time-
based could have negative impacts on time sensitive traffic and
is difficult to compute in a reliable and sufficient way. Many
other characteristics are studied by researchers to detect the
stepping stones using Machine Learning. However, these
identified traffic characteristics are invariant when the classifiers
have been trained. Furthermore, these methods couldn’t do
anything for the encrypted stepping stones. So building a
classifier that is adaptive to “feature concept drift” [14] and to
encryption (using the HTTPS protocol, etc.) is getting more and
more essential.

In industry, there are also some commercial solutions for the
stepping stones detection. Lots of examples and a comparison of
what methods are used are presented in Table 2. These methods
include URL list, IP filters, Packet analysis, HTTP head filters,
pre-defined rules and IP geo-location. IP2Proxy [19] analyses
the HTTP header X-Forwarded-For for spotting proxy traffic.
However this is an optional header. CIPAFilter [20] compares

URLs with a list of known proxy websites and then blocks. The
method needs to be updated over the time. MaxMind [21] uses
the IP list to offer the detection service. This however runs into
the same problem as using a URL list.

Generally, mainstream methods utilize common features for
the stepping stone detection, few studies consider the difference
features of web proxy sites. We incorporate some methods about
malicious web pages detection [24] into web proxy detection,
and add the special DOM-based features. And finally, our
ProxyDetector is demonstrated to be very effective for web
proxy detection by our experiment and is the primary
contribution of our work in this paper.

VI. CONCLUSION

In this paper, we proposed a novel system named

ProxyDetector for automatically detecting the stepping stones

based on the URLs crawled in real time. There’s tremendous

value in aiding the forensic analysis of web traffic traces, for

example to help in the investigation of the user-browser

interactions in real time. To protect end users form visiting

abandoned sites or monitor end users using stepping stones, we

can attempt to identify suspicious web proxies’ URLs by

blacklists or their corresponding lexical and host-based features.

A particular challenge in this domain is that web proxies are

constantly evolving in a dynamic landscape. To prevail in this

contest, we experimented with different approaches for

detecting the stepping stones.

Through our experiments, we show that ProxyDetector can

correctly detecting the stepping stones with high true positive

and low false positive, and that it outperforms a previously

proposed URL-based approach.

The future work includes how to dig more available

abnormal behavior features hiding with malicious surfing using

stepping stones. For example, some false negative cases should

be considered (i.e, one user may first login on one local CDN,

then connect to the proxy node).

ACKNOWLEDGMENT

The research work is supported by Supported by Strategic
Priority Research Program of the Chinese Academy of Sciences
under Grant (No.XDA06030602), National Natural Science
Foundation under Grant (No.61402464, No.61402474,
No.61602467) and National Key R&D Program 2016,
2016YFB0801304. The authors thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper.

REFERENCES

[1] Li Z, Alrwais S, Xie Y, et al. Finding the linchpins of the dark
web: a study on topologically dedicated hosts on malicious web
infrastructures[C]//Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013: 112-126.

[2] Ma J, Saul L K, Savage S, et al. Beyond blacklists: learning
toDetectMaliciousWebsitesfromSuspiciousURLs[C]//Proceedin
gs of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009: 1245-1254.

[3] Staniford-Chen S, Heberlein L T. Holding Intruders Accountable
on the Internet[C]// Security and Privacy, 1995. Proceedings.
1995 IEEE Symposium on. IEEE, 1995:39-49.

[4] Snort. https://www.snort.org/ ,2017.

[5] Peng P, Ning P, Reeves D S. On the secrecy of timing-based
active watermarking trace-back techniques[C]// Security and
Privacy, 2006 IEEE Symposium on. IEEE, 2006:15 pp.-349.

[6] Aghaei-Foroushani V, Zincir-Heywood / N. A Proxy Identifier
Based on Patterns in Traffic Flows[M]. IEEE, 2015.

[7] Lin R M, Chou Y C, Chen K T. Stepping stone detection at the
server side[C]// Computer Communications Workshops.
2011:964 - 969.

[8] He T, Venkitasubramaniam P, Tong L. Packet Scheduling
Against Stepping-Stone Attacks with Chaff[J]. Proc IEEE
Military Communications Conf, 2006:1 - 7.

[9] Kumar R, Gupta B B. Stepping Stone Detection Techniques:
Classification and State-of-the-Art[M]// Proceedings of the
International Conference on Recent Cognizance in Wireless
Communication & Image Processing. Springer India, 2016.

[10] Shullich R, Chu J, Ji P, et al. A SURVEY OF RESEARCH IN
STEPPING-STONE DETECTION[J]. International Journal of
Electronic Commerce Studies, 2011, 2(2).

[11] Zhang Y, Paxson V. Detecting stepping stones[C]// Conference
on Usenix Security Symposium. USENIX Association,
2001:263--279.

[12] Google Protocol Buffer. http://developers.google.com/protocol-
buffers/ docs/overview?csw=1

[13] Seleniumwebdriver.
http://docs.seleniumhq.org/projects/webdriver/,2017

[14] Gama J, Žliobaitė I, Bifet A, et al. A survey on concept drift
adaptation[J]. ACM Computing Surveys (CSUR), 2014, 46(4):
44.

[15] Chen Z, Zhang P, Zheng C, et al. CookieMiner: Towards real-
time reconstruction of web-downloading chains from network
traces[C]//Communications (ICC), 2016 IEEE International
Conference on. IEEE, 2016: 1-6..

[16] URL blacklist. http://urlblacklist.com ,2017

[17] J. Brozycki. Detecting and preventing anonymous proxy usage,
SANS Inst, 2008

[18] Miller S, Curran K, Lunney T. Traffic Classification for the
Detection of Anonymous Web Proxy Routing[J]. International
Journal for Information Security Research, 2015, 5(1): 538-545.

[19] IP2Proxy, http://www.fraudlabs.com/ip2proxy.aspx, 2017

[20] CIPAFilter, https://cipafilter.com/, 2017

[21] MaxMind, https://www.maxmind.com/, 2017

[22] Trestian I, Ranjan S, Kuzmanovi A, et al. Unconstrained endpoint
profiling (googling the internet)[C]//ACM SIGCOMM Computer
Communication Review. ACM, 2008, 38(4): 279-290.

[23] Beautiful Soup,
https://www.crummy.com/software/BeautifulSoup/,2017.

[24] Invernizzi L, Benvenuti S, Cova M, et al. EvilSeed: A Guided
Approach to Finding Malicious Web Pages[C]// Security and
Privacy. IEEE, 2012:428-442.

[25] Global Web Index Q4,2013-Q3,2014 based on the Internet users
aged 16-64 http://insight.globalwebindex.net/chart-of-the-day-
90-million-vpn-users-in-china-have-accessed-restricted-social-
networks?ecid=

[26] Alexa. http://www.alexa.com/, 2017

[27] anonymster. https://anonymster.com/best-free-web-proxy-sites-
list/, 2017

[28] lxml parser, http://lxml.de/, 2017.

[29] Scikit-learn, http://scikit-learn.org/stable/ ,2017,

[30] Proxy4free, http://www.proxy4free.com/list/webproxy1.html,
2017.

http://docs.seleniumhq.org/projects/webdriver/

